
Understanding Customer Requirements:
an Enterprise Knowledge Graph Approach

Basel Shbita1?, Anna Lisa Gentile2, Pengyuan Li2, Chad DeLuca2, and
Guang-Jie Ren2

1 University of Southern California, Los Angeles, CA, USA
and Information Sciences Institute, Marina del Rey, CA, USA

shbita@usc.edu
2 IBM Research Almaden, San Jose, CA, USA

{annalisa.gentile, pengyuan}@ibm.com {delucac, gren}@us.ibm.com

Abstract. Understanding customers demands and needs is one of the
keys to success for large enterprises. Customers come to a large enterprise
with a set of requirements and finding a mapping between the needs they
are expressing and the scale of available products and services within the
enterprise is a complex task. Formalizing the two sides of interaction -
the requests and the offerings - is a way to achieve the matching. En-
terprise Knowledge Graphs (EKG) are an effective method to represent
enterprise information in ways that can be more easily interpreted by
both humans and machines. In this work, we propose a solution to iden-
tify customer requirements from free text to represent them in terms of
an EKG. We demonstrate the validity of the approach by matching cus-
tomer requirements to their appropriate business units, using a dataset
of historical requirement-offering records in IBM spanning over 10 years.

1 Introduction

Capturing domain knowledge is a critical task in many domains and applica-
tions - and especially so when dealing with capturing information about large
organizations. In a large enterprise, the information landscape of assets, skills, in-
tellectual properties, and customer requirements is very complicated, extremely
dynamic, and often under-specified - and this is especially true for a company
like IBM, that provides information technology solutions and consulting services
spanning from AI, analytics, security, cloud, supply chain etc. to a vast spectrum
of industries including banking, finance, education, energy, healthcare, govern-
ment, travel and transportation to mention a few. In many cases, the Subject
Matter Experts (SMEs) are the gatekeepers for matching customer needs with
the multitude of the company’s offerings - and they are perceived to hold the re-
quired knowledge to steer and develop business opportunities for the company. A
way to alleviate the issue is making sure that information is properly formalized,
shared, and accessible within the organization. Knowledge Graphs (KG) are a

? This work was conducted during Summer Internship at IBM Research Almaden.

2 Shbita et al.

popular way to represent information in a way that can be easily interpreted
by both humans and machines. In fact, for more than a decade many organi-
zations adopted KGs - oftentimes referred to as Enterprise KG (EKG) - to lay
the foundation of next-generation enterprise data and metadata management,
search, recommendation, analytics, intelligent agents, and more [33, 60].

Nonetheless generating and maintaining a complete EKG that harmonizes
all internal knowledge as well as data gathered from the vastness of open KGs
on the Web can be expensive and difficult to achieve, for many reasons. Both
internal organizational data and external customer requirements can be highly
heterogeneous, cryptic, short, highly technically written, and only understood
by a few. Those who actually have the expertise, experience, and procedural
knowledge to understand such data often do not have the expertise to formalize
it, nor the time to do so. External open knowledge available on the Web is vast,
incomplete, imbalanced, highly distributed, and heterogeneous - and not easily
accessible for SMEs without knowledge management skills. Without proper in-
tegration, the multitude of data repositories on the Web do not prove helpful in
supporting decision-making systems.

In this work we address the problem of bootstrapping, populating, and main-
taining an EKG - or a portion of it - relying on three main building blocks.
Specifically we (i) extract information from internal unstructured data in the or-
ganization; (ii) use Open Knowledge gathered from the Web to augment the ini-
tial data either directly or by bootstrapping off-the-shelf weakly supervised data
augmentation algorithms; and finally (iii) we rely on domain expertise to struc-
ture all acquired information into an EKG. Our proposal is a human-assisted
pipeline that generates augmented representations of organizational concepts.
Our humans-in-the-loop are SMEs internal to the organization who are famil-
iar with the assets and can understand customer needs - and can help shape
their semantic representation. The SMEs are involved in the selection of exter-
nal knowledge to be included in the EKG, or to be used to bootstrap the training
of the system. This approach lets us get high-quality, up-to-date insights from
undersized, emerging corpora.

The main contribution of this work is a showcase of how the orchestration of
NLP techniques, the usage of semantic resources, and human expertise can de-
liver industrial impact. We combine: (i) a method to tap into the vastness of open
KG from the Web and retrieve, select, and distill instrumental knowledge to build
and expand the EKG of interest; (ii) a method to extract structured informa-
tion from unstructured technical text; and finally (iii) a user-driven mechanism
to encapsulate the extracted knowledge within the existing EKG, and effectively
expand it and populate it.

One of the most valuable uses of the constructed EKG is matching customer
requirements to the available offerings in the organization. Specifically in this
work we employ the extracted EKG to train automatic methods to help sales ex-
perts identify the correct business units and offerings to answer specific customer
requirements. By using historical customer deal data within the organization, we
show that our methodology can automatically retrieve the best business units

Understanding Customer Requirements: an EKG Approach 3

and offerings that satisfy a customer requirement (compared against histori-
cal data). Specifically, we designed an in vitro classification task, using curated
ground truth from 10 years of historical sales deals and show that by using
the fully constructed EKG we improve the F1 score of the business-units multi-
classification task by as much as 4.1% when compared to a baseline method
without the usage of the EKG, and by 1.3% when using the non-augmented
version of the EKG.

2 Related Work

Capturing, representing, persisting, and sharing the vast amount of human
knowledge in a way that is effectively accessible from both human and auto-
mated methods is a topic that attracted numerous research efforts and still
presents many open challenges [55]. For many years Semantic Web technologies
[34] have provided formal models to represent explicit semantics in a machine-
interpretable form, and in the last decade Knowledge Graphs became the de
facto standard to accumulate and convey knowledge of the real world, especially
in industry settings [20]. As a representation of semantic relations between enti-
ties, KGs have proven to be particularly relevant for natural language processing
(NLP) [42], both to inform the task of knowledge acquisition - i.e. using NLP to
extract formal models from text [57] - or for the purpose of knowledge applica-
tion - i.e. exploiting KGs to enhance NLP techniques and language models [6, 28,
54]. The recent survey paper by Schneider et al. [42] provides a detailed account
of all recent works of KGs and NLP, classified under these two macro-classes.
Our work falls under the knowledge acquisition category - where all techniques
of information extraction and data integration are involved. At high level, the
Information Extraction (IE) methods can be grouped in two categories: (i) Open
IE - where the purpose is understanding the text - and (ii) targeted IE - where
the goal is a focused extraction of domain specific information for the purpose
of Knowledge Population [41].

Open IE can be considered a form of machine reading [2, 13, 36], where the
target knowledge schema is not known and extractions are represented in the
form of surface subject-relation-object triples. It is worth noting that there are
many solutions for text understanding that do not extract human understand-
able facts, but rather use statistical information to model the language in text
[10, 25, 37, 61], and represent the information with numerical vectors that cap-
ture statistical patterns of words - with words embeddings [1] being a popular
choice. While these data-driven models are impressive, they do not represent
semantics explicitly - therefore data is unintelligible for a human - and they
have no mechanism to logically reason about the captured knowledge. While we
use some of these methodologies in our proposed pipeline, it is merely as a pre-
processing step and we do not make specific contributions or claim novelties in
this direction, therefore discussing them in detail is out of the scope of this work.
On the other hand, some Open IE methods - more in line with our proposed
approach - represent extracted information as a Knowledge Graph, including

4 Shbita et al.

FRED [14], SHELDON [38], ClausIE [9], MinIE [15] and other similar methods
[16, 18]. The main difference with our proposed approach is that these methods
do not assume domain specific target ontologies, therefore the extracted content
can be way more than needed for the specific population task, thus requiring
additional effort for the selection of relevant information.

Our work is similar to targeted IE methods, which collect the extracted in-
formation in formal models, i.e. ontology population from text [35, 56]. Some
of the earliest approaches for ontology population from text are based on pat-
tern matching, string similarity functions, and external glossaries and knowledge
bases [52, 51, 4, 26, 44]. Others exploit vector-feature similarity using terms and
n-grams as features [5, 47, 17]. More recent works rely on: (i) machine learn-
ing, with standard NLP features extracted from text [24], or more sophisticated
features such as type relational phrases [31], or type correlation based on co-
occurring entities [39]; (ii) graph embedding models [62, 59, 40] and (iii) deep
learning models [12, 45, 46, 58, 30].

There exist many established initiatives to foster research on targeted IE,
such as the Knowledge Base Population task at TAC,3 the TREC Knowledge
Base Acceleration track,4 and the Open Knowledge Extraction Challenge [32].
In these initiatives, systems are compared on the basis of recognizing individuals
belonging to a few selected ontology classes, spanning from the common Person,
Place and Organization [48], to more specific classes such as Facility, Weapon,
Vehicle [11], Role [32] or Drug [43], among others. All these works tackle the
KG completion in terms of “missing instances", i.e. finding entities belonging
to pre-defined given classes. In the same direction, there is a plethora of tools
for automatically detecting named entities in free text and aligning them to a
predefined knowledge base, i.e., Spotlight [27], X-Lisa [63], Babelfy [29], Wikifier
[3]. However, all these tools are able to identify only instances that already exist
in a knowledge base, but do not cover the case of out-of-knowledge entities -
which is a common case for very technical and niche domains.

Fig. 1. EKG construction pipeline.

3 http://www.nist.gov/tac/2015/KBP
4 http://trec-kba.org/

Understanding Customer Requirements: an EKG Approach 5

3 Building the EKG

The problem we address can be classified as a data and knowledge acquisition
and integration task. Formally, we wish to populate and augment the Enterprise
Knowledge Graph (EKG) by automatically integrating specialized and comple-
mentary knowledge coming from heterogeneous sources: proprietary messy un-
structured data in the form of textual documents describing client requirements,
open linked data on the Web (Open KGs), and non-formalized SME knowledge
in the business domain.

Our proposed pipeline for the construction and enhancement of the EKG
consists of several steps and components, as illustrated in Figure 1. Each of the
components is designed to address the data extraction and knowledge integration
step in each of the data sources, then fuse them together to create an effective
EKG. We firstly extract initial triples from the unstructured proprietary data
(Section 3.2); then distill relevant knowledge from open KGs from the Web
(Section 3.3); and finally structure all extracted information into an EKG with
a user-driven method (Section 3.4).

3.1 Enterprise Knowledge Graph (EKG)

An Enterprise Knowledge Graph (EKG) is simply a KG of enterprise data with
the goal of powering certain capabilities that are relevant to the business. The
structure and content of the graph pertains to certain assets, clients, their re-
quirements, and other relevant entities and offerings in the business domain.

In our problem setting, a manually-curated EKG is provided. The EKG con-
tains triple statements about IBM business offerings/assets, organized in a hi-
erarchical structure that reflects the organizational grouping of assets within
business units and various topical verticals. The initial EKG used in this work
contains 422 classes and 827 individuals.
In its initial form, the graph does not capture any knowledge about clients,
their needs, or how these may relate to any of the pre-existing assets in the
graph. Our task is: given client requirements in textual documents, we want to
extract and represent client needs from text in a form that can be integrated and
connected to the current EKG. This task requires materializing stakeholders,
their needs, assets, and the relationships between all of the above within the
text. While the EKG already contains information about assets, client needs
are completely unknown to the EKG and they are expressed in text with a
vocabulary that often has little or no intersection with the exiting EKG concepts.
In order to tackle this problem, we enrich the extracted triples (both entities and
relations) with additional knowledge existing on the open Web and benefit from
prior knowledge provided by SMEs in the form of predefined examples of client
statement types that are used to structure the final EKG. This allows us to
capture corpus-specific information (both structural and semantic) and adapt to
different scenarios effortlessly.

6 Shbita et al.

3.2 Extracting Triples from Proprietary Data:
an NLP Approach

Business client requirement documents manifest as text snippets and include a
diverse set of client-specific vocabularies, which vary by industry, client, or indi-
vidual. These documents contain relevant and irrelevant information, which may
be hard to distinguish even for an SME. Each document might contain multiple
requirements, sometime expressed in the same short paragraph. Therefore, we
must provide practical tools to achieve a complete analysis, considering partic-
ular and general needs and managing requirements in a comprehensive manner.

In this work we used a selection of “client cases", typically redacted by cu-
ration teams that summarise the profile of the client company, what kind of
problem they are trying to address (the requirements), and which product(s) or
service(s) they purchased from IBM that helped solved their problem. For the
purposes of illustration, we will use the client case text shown in Listing 1.1 for
all the examples.

<COMPANY NAME > uses a Microsoft Distributed File System to enable employees
to access data and files residing on different servers , usually to create
financial reports. Previously , <COMPANY NAME > was supporting its Microsoft
Distributed File System with older IBM Power 570 servers. Although the
incumbent technology had performed satisfactorily , the servers were nearing
the limits of their processing capacity and were starting to generate high
maintenance costs. In addition , <COMPANY NAME > recognized the opportunity
to increase storage capacity and streamline administration tasks within its
storage area network (SAN). Thus , <COMPANY NAME > sought a reliable IT provider
to help it refresh its server and storage technology and boost the performance
of its Microsoft Distributed File System.

Listing 1.1. An example of a short client case text.

We design a custom pipeline to perform triple extraction from technical text,
based on linguistic parsing, statistical processing, and custom heuristics (Figure
1). The first step is sentence segmentation, which is the process of identifying
different sentences in a text paragraph. We perform the triple extraction step
for each individual sentence, i.e. we identify the pairs of concepts (entities) and
the relation between them, in the form of <concept> <relation> <concept>
(example in Figure 3).
The extraction is driven by (i) the part-of-speech (POS) annotation tags and (ii)
the dependency tree of the sentence. POS tagging is the process of identifying
the grammatical roles that explain how a particular word is used in a sentence
(e.g., noun, adjective, verb). Dependency parsing is the process of extracting
the dependency tree that represents the grammatical structure of the sentence
(e.g. finding the subject and its relation to other words). An example of the
extraction process is depicted in Figure 2, where underneath each word in the
sentence we denote its POS tag and over each edge we indicate the grammatical
relation between the words. Both of these extraction steps are implemented
using off-the-shelf tools. Specifically we rely on components from SpaCy [21], a
comprehensive Natural Language Processing (NLP) library.

Once each sentence is annotated we use a rule-based algorithm to extract the
relations in the form of individual triples. Specifically, we build on the hypothesis

Understanding Customer Requirements: an EKG Approach 7

Fig. 2. Dependency parse tree of an example sentence. POS tags are shown below each
word. The grammatical relation between words is denoted over the edges.

that the main relation, i.e. the predicate of the triple, is the main verb in the
sentence. We identify this verb first, and we concatenate any auxiliary, preposi-
tion, and negation words when present. This becomes the predicate of our triple.
Starting from the detected predicate (“root” verb) we traverse backwards over
the dependency tree to identify the candidate subject. Any compound, prefix, or
modifier words preceding the candidate subject will be concatenated to it, with
the exception of words with a POS tag that is neither a noun or an adjective.
We run the same process forward (following compound elements) to determine
the candidate object as well. This heuristic is not guaranteed to be optimal, yet
it provides a sufficient solution for reaching a good, yet noisy, extractor that
will steer additional components in our pipeline. As an example, consider the
sentence shown in Figure 2. In this case our technique will yield the verb “were
nearing” as the predicate/relation. The subject/head is the company itself (em-
ploys the anonymized term “<COMPANY NAME>” to ensure confidentiality) and the
object/tail is “high maintenance costs”.

The full document (including the sentence shown in Figure 2) and the set of
extracted triples are shown in Figure 3 - note that we use the company who’s
request belongs to as the subject/head of all the predicate/objects, as we want
to create a simplified customer-centric representation. Figure 3 also shows in red
boxes entities that have been externally recognized as entities in Wikidata [53] -
we extract those using theWikifier [3] Named Entity Recognition (NER) service.
This extraction is performed passing the full text snippet to Wikifier, completely
in parallel to the triple extraction process. Full details on the Wikidata based
augmentation are provided in Section 3.3.

Fig. 3. Example document and its corresponding extracted triples (subjects are high-
lighted in yellow, predicates are highlighted in blue, and objects are highlighted in
green), and linked QNodes (wrapped in a red, linked to the entity highlighted in black).

8 Shbita et al.

3.3 Open KG from the Web: a Distillery Approach

The semantic Web and the Linked Open Data (LOD) cloud5 are an invaluable
source of knowledge, with a multitude of semantically connected datasets to
exploit. For the scope of this work, we selected Wikidata [53] to perform our
data augmentation process. Wikidata is a free, collaborative, fast-growing KG
and importantly acts as a hub in the LOD cloud, in the sense that contains
numerous incoming and outgoing links to external KGs and ontologies. These
sources can also be exploited for further enrichment of the data and can be used
for future approaches to this task. Moreover, there are plentiful state of the art
tools to bootstrap the linkage from text to Wikidata - in fact we use the Wikifier
[3] Named Entity Recognition (NER) service in our augmentation pipeline.

The sheer size of Wikidata makes it difficult for an SME to effectively tap
into it. For this reason we design a KG distillation algorithm that: (i) constructs
a salient subgraph of Wikidata entities - referred in Wikidata as QNodes - that
are relevant to the extracted triples at hand (resulting from the process described
in Section 3.2) and (ii) leverages the Wikidata taxonomy to integrate essential
relations between the QNodes in the distilled subgraph.

Figure 3 depicts an example document, the result of the triple extraction, and
the corresponding Wikidata entities. In the distillation process we were able to
connect the phrase (and object) “storage area network” in the document to a
corresponding entry in Wikidata. We found out that “Storage area network”
corresponds to QNode Q237576 and is an instance of the concept “technical
system” (Q994895), and we also retrieved all the corresponding successor con-
cepts from Wikidata (as seen in Figure 4).

To perform the distillation, we use the Wikidata SPARQL query service.6
SPARQL is query language [7] and is one of the most powerful and most widely
used services for accessing Linked Data. The core component of our KG dis-
tillation process is essentially a SPARQL query: the Subgraph Retrieval Query
(SRQ). The SRQ query (depicted in Listing 1.2) starts with a target entity/-
class that has been previously recognized by the Wikifier service; it retrieves all
QNodes that are either direct instances of the target entity/class or of any of its
sub-classes, recursively.

1 SELECT ?c ?cLabel WHERE {
2 wd:Q994895 wdt:P31?/wdt:P279* ?c .
3 SERVICE wikibase:label {
4 bd:serviceParam wikibase:language "en". } }

Listing 1.2. Subgraph Retrieval Query (SRQ): The query has one target entity - QNode
(Q994895) - and retrieves all entities that are instance of (P31) or subclass of (P279)
the target entity (Q994895). The subclass relation is applied recursively - using the *
notation. Line 3-4 of the query simply retrieve a human-readable label for each resulting
QNodes.

5 LOD cloud: https://lod-cloud.net/
6 Wikidata SPARQL query service: https://query.wikidata.org/

Understanding Customer Requirements: an EKG Approach 9

Algorithm 1: Distilled Wikidata graph construction algorithm
Data: a set Q of QNodes
Result: a directed acyclic graph G of QNodes

1 foreach q ∈ Q do
2 G.add(q); // add all QNodes to graph

3 while True do
4 L = list of nodes in G with no outgoing P31/P279 edges;
5 Q∗ = getP31P279(L) \Q;
6 foreach q∗ ∈ Q∗ do
7 G.add(

⋃
q∗
j
∈P31P279(q)

q 7→ q∗j); // add new nodes & edges

8 if |Q∗| == 0 then
9 break;

10 Q = Q∗
⋃
Q

To handle the distillation task efficiently and avoid unnecessary calls to the
SPARQL endpoint, we designed Algorithm 1. The algorithm performs the aug-
mented subgraph construction. First, all recognized QNodes are inserted as nodes
to the empty graph G (lines 1-2). Then, we retrieve leaf nodes - nodes without
any outgoing edges of type P31/P279 - from the graph G to list L (line 4). The
function getP31P279 (line 5) acts as a wrapper function which triggers the SRQ
query for each input QNode in L. The variable Q∗ will hold the retrieved prede-
cessor nodes (with respect to P31/P279) from Wikidata, not including QNodes
that already exist in the graph (by subtracting Q in the same line). Next, we
insert all the newly retrieved nodes and edges into the graph. The iterative addi-
tion over the set (line 7) is required since there may be one-to-many relations for
each QNode, as expected in Wikidata, so we must execute over a set of nodes.
We enforce a terminating case (line 8) that happens when there is no growth in
the graph, meaning no new QNodes are retrieved, i.e. they already exist in our
graph. The set Q is updated at each iteration (line 10) to reduce the lookup in
the next repetition.

The relations between the nodes in the resulting graph G carry a semantic
meaning between the different QNodes (a node is semantically similar to its pre-
decessors and its successors) and will play a critical role in the RDF generation.
Examples for such distilled subgraphs, are shown as green nodes in Figure 4. As
seen in the graph, the QNode Q994895, which was retrieved following the extrac-
tion of the object “storage area network”, allowed the retrieval and addition
of QNodes such as Q58778 system to the graph with the appropriate taxonomic
relations from Wikidata.

3.4 Formalizing the Final EKG: a User-assisted Semantic Typing
Approach

Semantic typing is a group of fundamental natural language understanding prob-
lems aiming to classify tokens (or objects) of interest into semantic categories.
In the context of our problem, this task aims to introduce meaningful semantic

10 Shbita et al.

Fig. 4. A snippet of the EKG representing concepts extracted from client requirements
with linkage to acquired QNodes. Client document nodes are shown in yellow. Extracted
objects and concepts are shown in blue. QNodes are shown in green.

labels and types to the extracted objects in each triple, and allow users to narrow
the focus of the resulting EKG.

Conventionally, SMEs can find it challenging to articulate their domain
knowledge with a formalism such as RDF. Considering the amount of data the
EKG holds, modeling the entire EKG becomes intractable and tedious and is
often susceptible to human error. While one obvious solution is to perform auto-
mated semantic labeling, it is a difficult task in a narrow and technical domain.
A middle course to a fully automated solution is to design a data-driven pro-
cedure that can leverage SME knowledge to guide the data understanding and
produce semi-automated labeling services.

Specifically for our problem, we are trying to model client needs and re-
quirements in the EKG. While recognizing the triples can be mostly achieved
automatically, typing them often requires the definition of new concept classes.
To this end, we provide random samples of the extraction (triples, augmented
entities) to the SME and ask them to group the samples where they see fit. The
grouping is guided by the purpose of each particular statement (and the subse-
quent augmented triple) in the client requirement text; in fact, client requests
contain snippets with different intents: some might describe their background,
some might describe what they are struggling with, etc. As an example, consider
the text: “[orgEntity] is one of the largest financial services ...”.
This type of sentence is typically present in client requirement text, where a
background of the client itself is provided. Similarly, the snippet: “[orgEntity]
relied on ... data warehouse environment to support ...” is a com-
mon type of sentence describing current struggles of the client. We rely on the
SMEs to freely identify these different intents and create a desired label for them.
In fact, we give the SME a collection of approximately 20 sentences at a time
from different documents, sampled randomly - each of which contains at least a
single triple. We ask them to identify sentences that express a similar type of in-
tent and provide us with a label (name) of what that intent might be. The SME
can, for example, return us the set of two sentences “[orgEntity] aims to be
a personal bank in the digital age” and “[orgEntity] is one of the
largest financial services companies in the United States” and de-

Understanding Customer Requirements: an EKG Approach 11

clare that their intent is to “profile" an organization. Table 1 shows additional
examples of different types of “Statement Types” that were defined with the help
of SMEs. For the described four types, we engaged with one SME for a total
annotation time of one hour. Technically speaking, we store this information
(name of the intent, example sentences, etc.) in YAML files (Figure 5), effecetively
translating the SME high-level reasoning into actionable training examples for
the subsequent automated steps. A more technical SME can even introduce
variance in the categorized sentences by introducing a “slot” that corresponds
to entity types. In the example in Figure 5, the orgEntity slot has a partial
list of values (of type org) to provide structure and flexibility in the general
classification method.

Table 1. Client statement semantic types, their descriptions, and examples.

Statement type Description Example

profileStatement General attributes about the entity “is one of the largest financial services...”

attemptStatement Attempt or historical actions the entity has taken “relied on... data warehouse env. to support...”

needStatement Needs or desired outcomes the entity requires “wanted to build a system that...”

painPointStatement Pain points or obstacles the entity finds critical “struggled to process large volumes...”

This process results in a categorical classification model that is later used to
automatically translate the rest of the data into a formal EKG representation.
Specifically the classification model id implemented using Snips-NLU [8], and
trained with data generated by the SMEs. Snips-NLU uses a simple regular
expression matching as a first stop to match against statements from training
and logistic regression if there is no direct match. For logistic regression, TF-IDF
and co-occurrence features are extracted from the text, and a classifier is trained
with simple stochastic gradient descent. It is easy to add new training examples
and custom statements by configuring YAML files similar to the discussed example
(Figure 5).

Fig. 5. Excerpts from a YAML file used to train the semantic typing engine.

The training process can be iterated several times: the SME initially only
identifies a small set of examples, but is able to repeat the learning procedure
until they consider the labeling performance satisfactory, thus incrementally im-
proving the accuracy of “intent” representation. The modularity of the procedure

12 Shbita et al.

allows SMEs to explore and experiment with different categorizations, slots, and
filters as they see fit.

Finally, the extracted knowledge graph is materialized in an RDF format.
In our implementation, the RDFLib7 is used to construct the graph triples and
convert the data to a semantic knowledge graph. Figure 4 shows an excerpt
of the resulting knowledge graph. The yellow instances (i.e., CLIENT-CASE-X)
represent two example client documents. Each one is the subject/head of the
extracted triple, where their objects/tails are client statements (blue nodes) of
some type - e.g. ClientPainpoint and ClientNeed, respectively matching the
relation type leading to that object, i.e. ergr:painpoint and ergr:need). The
rest of the instances are in green, representing the QNodes we acquired from
Wikidata and the distillation process.

4 Evaluation and Discussion

The purpose of our experiment is to evaluate how our proposed method and
pipeline impacts downstream tasks and the usefulness of the constructed EKG.
Specifically we choose one of our downstream tasks - a multi-label classification
[50] of customer requirement texts.

Dataset. The experimental dataset comprises 10 years of historical data of cus-
tomer requirements and the corresponding sold assets and services. Specifically,
the dataset contains 24,180 customer stories documents, each of them with an
assigned set of business-unit labels - which indicate which business units within
the company provided products/services to answer each specific customer re-
quirement. A sample of some of the textual data can be explored on the “IBM
Customer Stories: As told by our Customers” blog8 where short articles classi-
fied by Topics and Industries describe successful collaborations between IBM and
several customers. These stories are clearly redacted for broader audience, and
can be richer and better elaborated that the raw data we use in our experiments,
but they can give an idea of how use cases are described.9

The average length of each requirement document is 127 words, with the
longest document containing 1,213 words, the shortest one 3 words (very short
documents are discarded as invalid, and are typically a copy of the title).

The business-unit labels assigned to each document vary from 1 to a max-
imum of 9, with an average of 2.44 labels per document, with a total number
of possible distinct labels of 13. These act as ground truth for the task and are
used as target for our experiments.

Multi-label Classification Task. Our experimental task consists of classifying
an unseen document (unstructured textual data) with one or several matching

7 https://rdflib.readthedocs.io/
8 https://www.ibm.com/blogs/client-voices/
9 https://www.ibm.com/blog/sustainability-begins-with-design/

Understanding Customer Requirements: an EKG Approach 13

business-units. After performing standard text pre-processing on the text (stem-
ming, stop-words, removal etc.), we compare five different experimental settings,
using: (i) text based features only; (ii) adding simple-KG features, (iii) adding
SME-based augmented-KG features, (iv) adding Wikidata-based augmented-KG
features, (v) adding all augmented-KG features (both SME and Wikidata).

Baseline. The first setting acts as baseline for our experiments. The constructed
KG is not used at all in this case. Instead, we utilize a state-of-the-art document
embedding model called Doc2Vec [23] to transform each document into a feature
vector. Doc2Vec determines a low-dimensional representation (i.e., embedding)
for a document: it learns a neural network using at each time one target word
from the document and the words that surround it, as well as it uses a global
contextual vector, associated with the document, as part of its predictive model.
Although Transformer-based models have been outperforming other models in
many NLP tasks [22], Doc2Vec is considered a simpler and faster model and can
be a more useful choice for a medium-sized dataset [19].

In this setting, we use the embedding produced by the Doc2Vec model to
train a One-vs-Rest (OvR) multi-label classification model that uses Support
Vector Machines (SVM) with a linear kernel to classify input data into business
units as a target. OvR constructs one classifier per class, which is trained to
distinguish the samples in the single class from the samples in all remaining
classes. This setting is denoted as “Doc2Vec” in Table 2.

KG Based Settings. To inject the KG in the classification model we employ
ComplEx [49], a state-of-the-art KG embedding model. As described in Section
3, each client document becomes a graph (example in Figure 4), which contains
Wikidata-concepts nodes, “document” nodes (representing the whole document)
and all other object nodes extracted by the triple extraction process. This whole
graph is fed to ComplEx, which produces embedding vectors per each node and
edge in the graph - we fix the size of each produced vector to 50.

The objective of ComplEx is to learn a fixed low-dimensional representa-
tion (i.e., embedding) of entities and relations in the KG while preserving their
semantic meaning. By representing each node as a combination of vectors and
computing their dot product, we are able to capture relationships between nodes.
The dot product is passed through a complex-valued function that allows learn-
ing vector representation for each node in the knowledge graph, including those
representing client documents. The choice of ComplEx vs other available KG em-
beddings techniques is that it uses complex valued vectors that better capture
anti-symmetric relationships.

We experiment with four different versions of the KG (results in Table 2): (i)
without applying the augmentation step (“Doc2Vec + KG”); (ii) only integrating
the semantic types acquired with the help of SME (“Doc2Vec + Augmented
KG (SME)”); (iii) only augmenting the with the Wikidata entities (“Doc2Vec +
Augmented KG (Wiki)”); (iv) or using the fully augmented version of the KG,
wuth both SME and Wiki based augmentations (“Doc2Vec + Augmented KG
(Full)”).

14 Shbita et al.

Similarly to the “Doc2Vec” baseline, we use the OvR multi-label SVM classi-
fier with the business unit labels as a target, but we concatenate the Doc2Vec
embedding with the appropriate KG embedding.
In each experimental setting, we utilized a 100-dimensional vector representation
for training and testing the models. Having the same vector size of 100 for the
embedding space across all settings was enforced to exclude that the benefit could
be due to a bigger embedding space rather than the type of captured content. To
ensure fairness in the information capacity between the different KG settings,
we concatenated a 50-dimensional vector obtained from Doc2Vec with a 50-
dimensional vector from the KG ComplEx embedding process. We evaluated the
models based on precision, recall, and F1 scores, using ten-fold cross-validation
that split the data into mutually exclusive subsets. In this approach, one subset
was used as the testing set, and the remaining subsets were used for training the
model.

Table 2. Results summary for the business units multi-classification task.

Method Precision Recall F1

Doc2Vec 0.730 0.590 0.653
Doc2Vec + KG 0.741 0.605 0.666
Doc2Vec + Augmented KG (SME) 0.754 0.608 0.673
Doc2Vec + Augmented KG (Wiki) 0.761 0.621 0.684
Doc2Vec + Augmented KG (Full) 0.761 0.638 0.694

The evaluation results in Table 2 show the precision, recall and F1 (harmonic
mean of precision and recall) for the task of assigning the appropriate business
unit(s) to an unstructured and unlabeled client request input, using the baseline
method and the four KG augmentation variants. Compared to the baseline, the
“Doc2Vec + KG” setting obtains slightly better results in all measures, while
the fully augmented pipeline (“Doc2Vec + Augmented KG (Full)”) achieves the
best results in terms of precision, recall, and F1, outperforming any other per-
mutation. In this setting, we capture both semantic and contextual information,
incorporate expert knowledge (SME), and leverage a vast and diverse source of
structured data (Wikidata). The precision of 0.761, recall of 0.638, and F1 score
of 0.694 demonstrate that this model can achieve a balance between correctly
identifying positive cases and minimizing false positives and false negatives, re-
sulting in improved overall performance compared to a baseline model that relies
only on text features.

Technical specifications and further considerations. For the “Doc2Vec + KG”
settings the total number of the generated triples was 150,022. The embeddings
were computed in a matter of minutes using a workstation powered by NVIDIA
GeForce RTX 2080 Ti GPU and Intel i7 CPU (GPU has 4352 cores and 11 GB
DDR6 memory).
For the other augmentation settings, it is worth mentioning the importance of
the size of graph G (Algorithm 1). Clearly, we could use the entire RDF dump
of Wikidata to incorporate the linkage information, but this would result in a

Understanding Customer Requirements: an EKG Approach 15

massive graph with a big number of QNodes, many of which not be useful for
our task. This would generate an intractable number of computations when gen-
erating the KG embeddings - and many of those would be purposeless. This is
where the distilled Wikidata graph comes into play. In this scenario, Algorithm 1
enriched our originally identified 3,729 QNodes to a total of 4,842 QNodes (con-
nected within the directed graph G), in 15 iterations (SPARQL calls - each with a
response time averaging in 3-10 seconds) - again, in a matter of minutes. Follow-
ing the semantic type assignments resulting from the SME inputs presented in
Table 1, we retained statement of types: attemptStatement, needStatement,
painPointStatement - and excluded statements of type profileStatement
which simply describe the customer profile. It resulted in a total of 147,992
triples (including the materialized QNodes) - with 474 unique needs, 390 unique
painPoints, and 123 unique attempts in the final EKG.

5 Conclusion and Future Work

In this work we introduce a method for constructing, modeling, and augment-
ing an Enterprise Knowledge Graph using (i) unstructured textual data from a
collection of business requirement documents, (ii) open Knowledge Graphs from
the Web - specifically Wikidata, and (iii) input from Subject Matter Experts.
We evaluate our method using a dataset of historical records spanning over 10
years, capturing customer requests and products/services that have been pro-
vided to answer each specific customer requirement. We construct a graph from
this data and quantify its the effect on informing a downstream task: classifying
customer requests to one or more business units that can answer each specific
customer need. The EKG improves the F1 score of the classification task by
as much as 4.1%. The aim of this work is for the augmented EKG to help the
sales people navigating and browsing the multitude of company offerings along
different business units, divisions and third party software offerings that we offer
to our clients. Sometimes it can be difficult to understand what some of the
assets accomplish (their descriptions can be highly technical). Having relations
in the graph between a product and e.g. the pain-point extracted from client-
stories (such as “struggled to process large volumes of orders”) can be
beneficial to understand their scope.

We foresee multiple directions for our future work. we plan to test with a
wider variety of fine grained targets for classification - e.g. item recommendation.
We will also explore multi-lingual support: matching requests in other languages
to our business offerings - for which we always have a representation in English.
We envisage using the EKG for various additional tasks, including link predic-
tion, assessing product similarities, understanding patterns etc. Finally, we plan
to extend our approach by leveraging additional textual knowledge from open
KBs to enrich each client document - this can provide additional context and
insights for the embedding process.

16 Shbita et al.

References

1. Almeida, F., Xexéo, G.: Word embeddings: A survey. arXiv preprint
arXiv:1901.09069 (2019)

2. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.:
Open information extraction from the web. In: Proceedings of the 20th
International Joint Conference on Artifical Intelligence. pp. 2670–2676. IJ-
CAI’07, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2007),
http://dl.acm.org/citation.cfm?id=1625275.1625705

3. Brank, J., Leban, G., Grobelnik, M.: Annotating documents with relevant
wikipedia concepts. Proceedings of SiKDD 472 (2017)

4. Castano, S., Peraldi, I.S.E., Ferrara, A., Karkaletsis, V., Kaya, A., Möller, R.,
Montanelli, S., Petasis, G., Wessel, M.: Multimedia interpretation for dynamic
ontology evolution. Journal of Logic and Computation 19(5), 859–897 (2008)

5. Cimiano, P., Völker, J.: Towards large-scale, open-domain and ontology-based
named entity classification. In: RANLP (2005)

6. Colon-Hernandez, P., Havasi, C., Alonso, J., Huggins, M., Breazeal, C.:
Combining pre-trained language models and structured knowledge (2021),
http://arxiv.org/abs/2101.12294

7. Consortium, W.W.W., et al.: Sparql 1.1 overview (2013)
8. Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A., Leroy, D., Doumouro, C.,

Gisselbrecht, T., Caltagirone, F., Lavril, T., et al.: Snips voice platform: an embed-
ded spoken language understanding system for private-by-design voice interfaces.
arXiv preprint arXiv:1805.10190 pp. 12–16 (2018)

9. Del Corro, L., Gemulla, R.: ClausIE: Clause-based open information extraction.
WWW 2013 - Proceedings of the 22nd International Conference on World Wide
Web (i), 355–365 (2013)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

11. Doddington, G.R., Mitchell, A., Przybocki, M.A., Ramshaw, L.A., Strassel, S.,
Weischedel, R.M.: The automatic content extraction (ace) program-tasks, data,
and evaluation. In: LREC (2004)

12. Dong, L., Wei, F., Sun, H., Zhou, M., Xu, K.: A hybrid neural model for type
classification of entity mentions. In: IJCAI. pp. 1243–1249 (2015)

13. Etzioni, O., Fader, A., Christensen, J., Soderland, S., Mausam, M.: Open infor-
mation extraction: The second generation. In: Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume One. pp.
3–10. IJCAI’11 (2011), http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-012

14. Gangemi, A., Presutti, V., Reforgiato Recupero, D., Nuzzolese, A.G., Draicchio,
F., Mongiovì, M.: Semantic web machine reading with FRED. Semantic Web
(Preprint), 1–21 (2016)

15. Gashteovski, K., Gemulla, R., del Corro, L.: MinIE: Minimizing facts in
open information extraction. EMNLP 2017 - Conference on Empirical Meth-
ods in Natural Language Processing, Proceedings pp. 2630–2640 (2017).
https://doi.org/10.18653/v1/d17-1278

16. Gerber, D., Hellmann, S., Bühmann, L., Soru, T., Usbeck, R., Ngonga Ngomo,
A.C.: Real-time rdf extraction from unstructured data streams. In: International
semantic web conference. pp. 135–150. Springer (2013)

Understanding Customer Requirements: an EKG Approach 17

17. Giuliano, C., Gliozzo, A.: Instance-based ontology population exploiting named-
entity substitution. In: ACL 2008. pp. 265–272. ACL (2008)

18. Hamoudi, Y., Comebize, T.: Extracting rdf triples using the stanford parser (2016)
19. Hoberg, G., Knoblock, C.A., Phillips, G., Pujara, J., Raschid, L., Qiu, J.: Filling the

private firm void: Using representation learning to identify competitor relationships
between businesses (2022)

20. Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G.D., Gutierrez, C.,
Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S., Ngomo, A.C.N., Polleres, A.,
Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., Zimmermann, A.:
Knowledge graphs 54(4) (2021), https://doi.org/10.1145/3447772

21. Honnibal, M., Montani, I.: spacy 2: Natural language understanding with bloom
embeddings, convolutional neural networks and incremental parsing (2017)

22. Kalyan, K.S., Rajasekharan, A., Sangeetha, S.: Ammus: A survey of transformer-
based pretrained models in natural language processing. arXiv preprint
arXiv:2108.05542 (2021)

23. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International conference on machine learning. pp. 1188–1196. PMLR (2014)

24. Ling, X., Weld, D.S.: Fine-grained entity recognition. In: AAAI’12. pp. 94–100.
AAAI Press (2012), http://dl.acm.org/citation.cfm?id=2900728.2900742

25. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692 (2019)

26. McDowell, L.K., Cafarella, M.: Ontology-driven, unsupervised instance population.
Web Semantics: Science, Services and Agents on the World Wide Web 6(3), 218–
236 (2008)

27. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: Dbpedia spotlight: shedding
light on the web of documents. In: Proceedings of the 7th international conference
on semantic systems. pp. 1–8. ACM (2011)

28. Moiseev, F., Dong, Z., Alfonseca, E., Jaggi, M.: SKILL: Structured
Knowledge Infusion for Large Language Models pp. 1581–1588 (2022).
https://doi.org/10.18653/v1/2022.naacl-main.113

29. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambigua-
tion: a unified approach. Transactions of the Association for Computational Lin-
guistics 2, 231–244 (2014)

30. Murty, S., Verga, P., Vilnis, L., McCallum, A.: Finer grained entity typing with
typenet. arXiv preprint arXiv:1711.05795 (2017)

31. Nakashole, N., Tylenda, T., Weikum, G.: Fine-grained semantic typing of emerging
entities. In: ACL (1). pp. 1488–1497 (2013)

32. Nuzzolese, A.G., Gentile, A.L., Presutti, V., Gangemi, A., Garigliotti, D., Navigli,
R.: Open knowledge extraction challenge. In: Semantic Web Evaluation Challenge.
pp. 3–15. Springer International Publishing (2015)

33. Pan, J.Z., Vetere, G., Gomez-Perez, J.M., Wu, H.: Exploiting linked data and
knowledge graphs in large organisations. Springer (2017)

34. Patel, A., Jain, S.: Present and future of semantic web technologies: a research
statement. International Journal of Computers and Applications 43(5), 413–422
(2021)

35. Paulheim, H.: Automatic Knowledge Graph Refinement: A Survey of Approaches
and Evaluation Methods. SWJ 0, 1–0 (2015). https://doi.org/10.3233/SW-160218

36. Presutti, V., Nuzzolese, A.G., Consoli, S., Gangemi, A., Reforgiato Recupero, D.:
From hyperlinks to semantic web properties using open knowledge extraction. Se-
mantic Web 7(4), 351–378 (2016)

18 Shbita et al.

37. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. Tech. rep., OpenAI (2019)

38. Recupero, D.R., Nuzzolese, A.G., Consoli, S., Presutti, V., Peroni, S., Mon-
giovì, M.: Extracting knowledge from text using SHELDON, a semantic holis-
tic framEwork for LinkeD ONtology data. WWW 2015 Companion - Proceedings
of the 24th International Conference on World Wide Web pp. 235–238 (2015).
https://doi.org/10.1145/2740908.2742842

39. Ren, X., He, W., Qu, M., Huang, L., Ji, H., Han, J.: Afet: Automatic fine-grained
entity typing by hierarchical partial-label embedding. In: Proc. of the Conf. on
Empirical Methods in Natural Language Processing (EMNLP) (2016)

40. Ristoski, P., Faralli, S., Ponzetto, S.P., Paulheim, H.: Large-scale taxonomy in-
duction using entity and word embeddings. Proceedings - 2017 IEEE/WIC/ACM
International Conference on Web Intelligence, WI 2017 pp. 81–87 (2017).
https://doi.org/10.1145/3106426.3106465

41. Saggion, H., Funk, A., Maynard, D., Bontcheva, K.: Ontology-based information
extraction for business intelligence. In: The Semantic Web, pp. 843–856. Springer
(2007)

42. Schneider, P., Schopf, T., Vladika, J., Galkin, M., Simperl, E., Matthes, F.: A
Decade of Knowledge Graphs in Natural Language Processing: A Survey (2022),
http://arxiv.org/abs/2210.00105

43. Segura-Bedmar, I., Martínez, P., Herrero Zazo, M.: Semeval-2013 task 9 : Ex-
traction of drug-drug interactions from biomedical texts (ddiextraction 2013). In:
SemEval 2013. pp. 341–350. ACL (June 2013)

44. Shbita, B., Rajendran, A., Pujara, J., Knoblock, C.A.: Parsing, representing and
transforming units of measure. In: Proceedings of the Conference on Modeling the
World’s Systems (2019)

45. Shimaoka, S., Stenetorp, P., Inui, K., Riedel, S.: An attentive neural architecture
for fine-grained entity type classification. arXiv preprint arXiv:1604.05525 (2016)

46. Shimaoka, S., Stenetorp, P., Inui, K., Riedel, S.: Neural architectures for fine-
grained entity type classification. arXiv preprint arXiv:1606.01341 (2016)

47. Tanev, H., Magnini, B.: Weakly supervised approaches for ontology population.
Citeseer (2008)

48. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In: Proceedings of the Seventh
Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4. pp.
142–147. CONLL ’03, Association for Computational Linguistics, Stroudsburg, PA,
USA (2003)

49. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: International conference on machine learning.
pp. 2071–2080. PMLR (2016)

50. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International
Journal of Data Warehousing and Mining (IJDWM) 3(3), 1–13 (2007)

51. Velardi, P., Faralli, S., Navigli, R.: Ontolearn reloaded: A graph-based algorithm
for taxonomy induction. Computational Linguistics 39(3), 665–707 (2013)

52. Velardi, P., Navigli, R., Cuchiarelli, A., Neri, R.: Evaluation of OntoLearn, a
methodology for automatic learning of domain ontologies. Ontology Learning from
Text: Methods, evaluation and applications 123, 92 (2005)

53. Vrandecic, D., Krotzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)

Understanding Customer Requirements: an EKG Approach 19

54. Wang, S., Zhao, R., Chen, X., Zheng, Y., Liu, B.: Enquire one’s parent and child
before decision: Fully exploit hierarchical structure for self-supervised taxonomy
expansion. TheWeb Conference 2021 - Proceedings of the World Wide Web Confer-
ence, WWW 2021 pp. 3291–3304 (2021). https://doi.org/10.1145/3442381.3449948

55. Weikum, G., Dong, X.L., Razniewski, S., Suchanek, F.: Machine knowledge: Cre-
ation and curation of comprehensive knowledge bases. Foundations and Trends in
Databases 10(2-4), 108–490 (2021). https://doi.org/10.1561/1900000064

56. Weikum, G., Hoffart, J., Suchanek, F.: Ten Years of Knowledge Harvesting: Lessons
and Challenges. Data Engineering 5, 41–50 (2016)

57. Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: A look back
and into the future. ACM Computing Surveys (CSUR) 44(4), 1–36 (2012)

58. Yaghoobzadeh, Y., Adel, H., Schütze, H.: Noise mitigation for neural entity typing
and relation extraction. arXiv preprint arXiv:1612.07495 (2016)

59. Yaghoobzadeh, Y., Schütze, H.: Corpus-level fine-grained entity typing using con-
textual information. arXiv preprint arXiv:1606.07901 (2016)

60. Yan, J., Wang, C., Cheng, W., Gao, M., Zhou, A.: A retrospective of knowledge
graphs. Frontiers of Computer Science 12(1), 55–74 (2018)

61. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: Xlnet:
Generalized autoregressive pretraining for language understanding. In: Advances
in neural information processing systems. pp. 5753–5763 (2019)

62. Yogatama, D., Gillick, D., Lazic, N.: Embedding methods for fine grained entity
type classification. In: ACL (2). pp. 291–296 (2015)

63. Zhang, L., Rettinger, A.: X-LiSA: cross-lingual semantic annotation. VLDB 7(13),
1693–1696 (2014)

