
TRIC: A Triples Corrupter For Knowledge
Graphs

Asara Senaratne, Pouya Ghiasnezhad Omran, Peter Christen, and Graham
Williams

School of Computing, The Australian National University, Canberra, Australia.
{asara.senaratne, p.g.omran, peter.christen, graham.williams}@anu.edu.au

Abstract. We study the problem of corrupting triples in Knowledge
Graphs (KG) for the purpose of assisting anomaly detection and error
detection techniques developed for KG quality enhancement. Our goal is
to provide users with the highest possible level of control over the triples
corruption process, and simultaneously develop a solution that scales to
large KGs. Hence, we introduce TRIC, an approach for corrupting triples
considering both semantic and type information to generate errors in a
KG. In this paper, we discuss how the problem of triples corruption
is challenging, and different from existing negative sampling techniques
used in link prediction. To the best of our knowledge, there is no approach
in the literature dedicated for generating abnormal triples in KGs to
support anomaly detection and error detection tasks.

Keywords: Anomalous triples · Erroneous triples · Knowledge Graph
quality enhancement · Negative sampling.

1 Introduction

Large scale Knowledge Graphs (KG) such as YAGO, DBpedia, and Wikidata are
published and widely used at present. However, these KGs are far from perfect
and have many quality issues. For example, these KGs may contain inaccurate,
or abnormal triples which limit the credibility and further utility of the KGs [8].
The domain of data quality assessment in the field of traditional relational data
roots in the literature, and has recently attracted experts from the domain of
knowledge representation. Inspired by our recent work in anomaly detection [5,4],
we consider the problem of empirically evaluating anomaly detection and error
detection algorithms developed for quality enhancement of KGs, in the absence
of labelled data.

The essence of this study is the absence of a standardized technique to
systematically corrupt triples in a KG considering both semantics and entity
types of triples. As none of the real-world KGs contain labelled data (ground
truth data), developers of existing KG quality enhancement techniques adopt
impromptu means of corrupting triples for their evaluation purposes [1]. This
further demotivates the development of unsupervised and human-independent
approaches for anomaly and error detection in KGs. As a result, many of the



2 A. Senaratne et al.

existing KG error detection techniques depend on external sources to validate
their proposed approaches during experimental evaluation [6]. However, this is
a costly process, and not every KG has a gold standard [2].

To overcome the stated problem, we introduce a triples corrupter for knowl-
edge graphs (TRIC). It is unsupervised, and can introduce a wide range of errors
(inaccurate, unusual, contradicting, invalid, redundant triples, and data quality
errors) in a KG by corrupting either of subject, predicate, or object, whilst con-
sidering type and semantic information. This is in contrast to negative sampling,
where negative triples are generated by corrupting a known positive triple by
replacing either subject, predicate, or object. TRIC introduces different types of
errors by corrupting a set of randomly chosen triples in a KG, where it can cor-
rupt both entity-based and literal-based triples. Furthermore, TRIC allows the
user to have complete control over the triples corruption process. While TRIC
operates on a default setting, if required, a user can determine the types of errors
to be introduced, the percentage of errors from each error type to be introduced,
and the overall percentage of triples to be corrupted such that the KG has 10%,
20%, and so on of its triples corrupted.

Our contribution: We introduce TRIC, a pioneer in generating errors in a
KG to support anomaly and error detection techniques. The novelty of TRIC is
its ability to corrupt both entity-based and literal-based triples by considering
the semantics, data types, and entity types of the associated relations, literals,
and entities, respectively. TRIC is automated, and requires no user assistance.
Furthermore, the corruptions of TRIC will introduce inaccurate, unusual, con-
tradicting, invalid, redundant triples, and data quality errors in a KG.

2 Related Work

There are many techniques proposed in the literature for KG evaluation. One
common evaluation strategy is to use a partial gold standard. In this method-
ology, a subset of graph entities or relations are selected and labeled manually.
Another evaluation strategy is to use the given KG itself as a test dataset, which
is known as silver standard evaluation. For retrospective evaluations, the output
of a given approach is given to human judges for annotation, who then label iden-
tified errors as correct or incorrect [2]. While it is costly and time consuming to
perform manual evaluation involving human experts, obtaining a gold standard
KG for every KG is infeasible. Hence, most existing KG evaluation approaches
depend on silver standard evaluation, where the developers of these these tech-
niques synthetically generate errors. Negative sampling is one such technique
used to introduce corrupted triples [2].

Negative sampling techniques [7] generate negative triples by corrupting a
known positive triple (s, p, o) ∈ G by replacing either s, p, or o. Usually, the
corruption of relations (predicate) is omitted as the evaluation of KG embedding
models on the link prediction task only considers the suitability of head (subject)
prediction and tail (object) prediction, but not relation (predicate) prediction.
Due to the simplicity in thus generated corrupted triples (as this approach has



TRIC: A Triples Corrupter For Knowledge Graphs 3

no specific interest in corrupting the semantics nor the data types of literals),
and given that real-world errors and anomalies in KGs are much complex [5],
there exists the requirement of a triples corruption approach dedicated for the
evaluation of anomaly detection and error detection techniques developed for
KGs.

3 Methodology

Even though large scale KGs such as YAGO-4 contains semantic constraints in
the form of SHACL to keep data clean [3], such a validation layer is not often
available in custom built KGs. Hence, during the designing process of TRIC,
we considered all possible quality issues that can exist in such real-world KGs,
where there is no adoption of constraints such as SHACL or ShEx.

We consider a directed edge-labelled KG, G = (V,E) containing a set of
nodes (or vertices) V , and a set of labelled edges E connecting these vertices.
Each edge e ∈ E, together with the connecting nodes are considered as a triple
t. A triple (also named as a triplet) contains the three elements subject (head)
s ∈ S, predicate (relation) p ∈ P , and object (tail) o ∈ O. A triple t is denoted
as (s, p, o), where (s, o) ∈ V . While a subject s ∈ t is considered as a real-world
entity, an object o ∈ t can either be an entity n, or a literal l (an entity’s attribute
value) [5]. We refer triples of the form (s, p, n) as entity-based triples, and (s, p, l)
as literal-based triples.

Table 1 provides the fifteen types of errors TRIC can generate considering
both (s, p, n) and (s, p, l) triples. Furthermore, algorithm 1 provides the pseu-
docode of TRIC under the default setting (assuming there are no user inputs).
To replace an element of t, TRIC extracts the new content within the KG itself.
While TRIC randomly selects the triples for corruption based on the percentage
of errors required, the entities and predicates to use as replacements are also
selected randomly after analyzing the type information associated with the enti-
ties. We obtain entity type information via inferencing. Implementation of TRIC
is available on our GitHub repository1.

4 Conclusion and Future Work

In this paper, we introduced TRIC, a triples corrupter for Knowledge Graphs
(KG) that is aimed at supporting the KG quality enhancement tasks; anomaly
detection and error detection. Even though there exists negative sampling tech-
niques dedicated for link prediction, the triples corrupted via negative sampling
cannot fully exercise the capabilities of anomaly and error detection approaches,
as negative sampling does not consider semantic and type information of the
predicates, literals, and entities. As future work, we aim to publish TRIC as a
Python library for the use of the wider research community.

1 https://github.com/AsaraSenaratne/SEKA

https://github.com/AsaraSenaratne/SEKA


4 A. Senaratne et al.

Table 1. Types of errors TRIC can generate in a KG.

Error Types Original Triple/Status Corrupted/New Triple
(1) Change s while pre-
serving entity type.

<personA, isMarriedTo,
personB>

<personC, isMarriedTo,
personB>

(2) Change o while pre-
serving the entity type

<personA, isMarriedTo,
personB>

<personA, isMarriedTo,
personD>

(3) Change p while pre-
serving the predicate type

<personA, isMarriedTo,
personB>

<personA, hasChild, per-
sonB>

(4) Change both (s, o)
while preserving the entity
types.

<personA, isMarriedTo,
personB>

<personE, isMarriedTo,
personF>

(5) Change s while also
changing the entity type.

<personA, isMarriedTo,
personB>

<moon, isMarriedTo, per-
sonB>

(6) Change o while also
changing the entity type.

<personA, isMarriedTo,
personB>

<personA, isMarriedTo,
london>

(7) Change both (s, o)
while also changing their
entity types.

<personA, isMarriedTo,
personB>

<moon, isMarriedTo, lon-
don>

(8) Change p while also
changing its semantic
meaning. That is replace
predicates used for a per-
son with a predicate that
is not used for a person.

<personA, isMarriedTo,
personB>

<personA, livesIn, per-
sonB>

(9) Add an edge between
two entities, such that
there is a type inconsis-
tency in the predicate
introduced.

The entities personP and
personQ have no relation-
ship

<personP, produced, per-
sonQ>

(10) Add an edge between
two entities, such that
there is no type incon-
sistency in the predicate
introduced.

The entities personP and
personQ have no relation-
ship

<personP, hasChild, per-
sonQ>

(11) Introduce semanti-
cally incorrect literals to
entities.

Add DateOfBirth to a
location entity

<london, hasDateOfBirth,
"10/10/1990">

(12) Introduce semanti-
cally correct literals to
entities (avoiding dupli-
cates).

Add hasWebsite to a per-
son

<personA, hasWebsite,
"www.a.com"

(13) Corrupt t such that
the literal value changes
to a value of a different
data type.

A date gets changed to a
name.

<personA, hasDateOf-
Birth, "Sarah">

(14) Corrupt t by remov-
ing the literal value, thus
generating a triple with a
missing literal.

<personA, hasDateOf-
Birth, "12/02/1989">

<personA, hasDateOf-
Birth, "">

(15) Corrupt t such that
the new literal value is a
duplicate of an existing
literal value of the same
entity under considera-
tion.

<personA, hasDateOf-
Birth, "12/02/1989">

<personA, hasDateOf-
Birth, "12/02/1989">



TRIC: A Triples Corrupter For Knowledge Graphs 5

ALGORITHM 1: Error generation steps of TRIC.
Input: G: The KG to be subjected for triples corruption.
Output: Gc: The KG with corrupted triples.

//If no user input, default percentage of errors is 1%
1: p← defineAnomalyPercentage()

//Get total number of triples in G.
2: sizeG← getSize(G)

//Find count of errors required from the percentage
3: errorscount← sizeG ∗ p

//Number of errors required from each error type (from 15 error types)
4: errorseach← round(errorscount/15)

//Select the triples to corrupt
5: triplestocorrupt← getTriplesRandomly(G)

//Remove triples to corrupt from G
6: reducedG = Gc ← removeTriples(G, triplestocorrupt)

//Iterate over the types of errors TRIC can generate
7: for error in errortypes:
8: count = 0

//Iterate to generate specified number of errors from each error type.
9: while count <= errorseach:

//Add corrupted triples to graph
10: Gc+ = generateErrors(error, reducedG, triplestocorrupt)

//Increment count
11: count++
12: return Gc

References

1. Jia, S., Xiang, Y., Chen, X., Wang, K.: Triple trustworthiness measurement for
knowledge graph. In: The World Wide Web Conference. pp. 2865–2871 (2019)

2. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic web 8(3), 489–508 (2017)

3. Pellissier Tanon, T., Weikum, G., Suchanek, F.: Yago 4: A reason-able knowledge
base. In: ESWC. pp. 583–596. Springer (2020)

4. Senaratne, A., Christen, P., Williams, G., Omran, P.G.: Unsupervised identification
of abnormal nodes and edges in graphs. JDIQ 15(1), 1–37 (2022)

5. Senaratne, A., Omran, P.G., Williams, G., Christen, P.: Unsupervised anomaly de-
tection in knowledge graphs. In: IJCKG. pp. 161–165 (2021)

6. Wang, Y., Ma, F., Gao, J.: Efficient knowledge graph validation via cross-graph
representation learning, p. 1595–1604. ACM, New York (2020)

7. Xie, R., Liu, Z., Lin, F., Lin, L.: Does william shakespeare really write hamlet?
knowledge representation learning with confidence. In: AAAI. vol. 32 (2018)

8. Xue, B., Zou, L.: Knowledge graph quality management: a comprehensive survey.
TKDE (2022)


	TRIC: A Triples Corrupter For Knowledge Graphs

