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Abstract. Query understanding is a fundamental part of an e-commerce
search engine, and it is crucial for correctly identifying the buyer intent.
To perform a semantic query understanding, in this work we introduce
a relationship-rich product Knowledge Graph (KG), mined from seller
provided data, which captures entities and relationships to model the
whole product inventory, allowing us to identify the buyer intent more
accurately.
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1 Introduction

The main task of an e-commerce search engine is to semantically match the user
query to the product inventory and retrieve the most relevant items that match
the user’s intent. This task is not trivial as often there can be a mismatch be-
tween the user’s intent and the product inventory, which is the main cause for
customer churn and loss of revenue. To bridge this gap, plethora of query un-
derstanding approaches have been introduced [1]. However, generating a precise
knowledge base with high coverage for semantic query understanding remains a
main challenge. In this work we mine seller provided information, to generate a
high-quality KG covering the whole product inventory. To assure data quality,
all the knowledge in the KG must be confirmed by a number of sellers, i.e., “wis-
dom of the sellers”. The KG contains entities and relations describing millions
of products, e.g., brands, colors, materials, sizes etc. To perform semantic query
understanding, we perform entity linking using the KG [5]. Through the iden-
tified entities we can explore the graph to draw additional information about
each entity and analyze the relations to other entities in the graph. For exam-
ple, given the query “Oyster Bracelet Submariner”, we first identify the query
category in our inventory, and we pull the corresponding KG for that category,
i.e., “Wristwatches”. As shown in Figure 1, we are able to link each text men-
tion to the corresponding KG entity, e.g., “Submariner” is linked to an entity
of type “model”. Along with the entities, we can retrieve the number of listings
associated with the given entity. This allows us to capture the buyer intent, i.e.,
the buyer is interested in “luxury” and “classic” watches, and we can identify
similar models that they might be interested in.
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Fig. 1: KG-based semantic query understanding

In this work, we use the product KG in several query understanding appli-
cations, which significantly improve the buyer experience.

2 Approach

We build a directed weighted graph based on co-occurring aspect-value pairs in
listings provided by sellers partitioned by category. Formally, we represent the
product inventory as a set of product listings L = {ly,ls,...,l,}, where each
listing [,, is represented as a set of aspect-value pairs AV,, = {avy, avs, ..., av,},
where a is the aspect name, and v is the aspect value. Each aspect name a is
converted to an rdf:Class, class/A, and the corresponding value v is converted to
an instance of the class class/A. For example the aspect value pair Brand:Apple is
converted to the following triple: kg:brand/Apple rdf:type kg:class/Brand.
Each pair of co-occurring aspect-value pairs within at least one product listing,
av; and avj is converted into 2 triples as follows: kg : a;/v; kg :p/a; kg:a;/v;
and kg : a;/vj kg : p/a; kg : a;/v;, where the predicates are derived from the class
of the object entity. For each pair av; and av;, we calculate the co-occurrence
frequency c;;, as well as the total frequency of each aspect-value pair, ¢; and c;
respectively. Then the predicate e;; between these two pairs is assigned a weight
w;j = ¢;j/¢;. Similarly, we set a weight w;; = cjl-/cj on the symmetric edge
eji. Such weights give higher relevance to aspect-value pairs that co-occur more
often together, normalized by their global popularity. This results in a directed
weighted graph, which is generated separately for each category.

For example, for the co-occurring aspect-values Brand:Apple and Color:Sierra
Blue, we will generate the following quadruples:

kg:brand/apple kg:p/color kg:color/sierra_blue 0.01
kg:color/sierra_blue kg:p/brand kg:brand/apple 0.99

The fourth element is the weight of the triple, and in this case indicates that
the color Sierra Blue is almost fully conditioned on the brand Apple, while the
other direction is not significant.
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Fig.2: KG Generation Pipeline

To assure high-quality data, we filter out noisy entities based on their fre-
quency, consolidate entities appearing under different surface forms, and prune
edges with low weight. The KG generation pipeline, shown in Figure 2 runs
weekly, using Spark jobs, automated through Apache Airflow. The resulting KG
contains tens of millions of entities, and hundreds of millions of relations.

To ease the use of such KG in downstream tasks, we use the graph embed-
ding approach using biased walks [4]. We perform biased walks on the weighted
graph to flatten the graph in sequences that can later be embedded by any of
the existing language models. This imparts a locality as well as some global
contextual information to the nodes across the graph. This approach is able to
capture the neighborhood of each entity in a single vector, which then can be
used for similarity calculation or context inference. Such embeddings can then
be ingested in various machine learning models to solve a variety of downstream
tasks, in this case query rewriting.

3 Applications

The knowledge graph is available for exploration and querying within the en-
terprise, as shown in Figure 3. Internal users regularly use this tool to perform
exploratory data analysis, and scope new opportunities.

We use the product KG in a handful fundamental e-Commerce applications.
Each application has been evaluated offline or online, i.e., A /B tests with millions
of users. The tests showed a statistically significant drop in search abandonment
rate and decrease in low recall search sessions, as well as a significant increase
in purchased products. The applications include:

Semantic Query Expansion: Identify synonyms, hyponyms and subtype relations
for semantic query expansions, for colors, materials, models, brands, etc. [3].
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Fig. 3: KG data exploration tool

KG-enhanced Query Reformulation: Neural generative query rewriting model
using KG embeddings, trained on user search logs. We build a KG-enhanced
token dropping model, which is able to identify and remove least significant
tokens in a query in order to increase relevant recall. Furthermore, we train a
generative model for end-to-end query rewriting, which is able to identify entity
substitutes or increase the query abstraction in order to increase the recall [2].

Multi-Faceted Item Recommendation: Recommend diverse items related to the
initial buyer intent, by expanding on different entities. We identify entity sub-
stitutes and allow the user to pivot on different aspects of the query in order to
easier identify the products they are interested in.

Listing Autocomplete and Validation: Infer missing aspect values and remove
inconsistent aspect values to assist sellers when listing new items on the platform.
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