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Abstract. Ontologies can act as a schema for constructing knowledge
graphs (KGs), offering explainability, interoperability, and reusability.
We explore ontology-compliant KGs, aiming to build both internal and
external ontology compliance. We discuss key tasks in ontology compli-
ance and introduce our novel term-matching algorithms. We also propose
a pattern-based compliance approach and novel compliance metrics. The
building sector is a case study to test the validity of ontology-compliant
KGs. We recommend using ontology-compliant KGs to pursue automatic
matching, alignment, and harmonisation of heterogeneous KGs.
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1 Introduction and Motivation

An ontology is typically used as the backbone for constructing a KG, build-
ing so-called ontology-based KGs. In this setting, the ontology and the KG are
often treated as independent functional components. An ontology provides a
knowledge-oriented graph schema (i.e., TBox), whereas a KG represents the
corresponding data-driven instances (i.e., ABox). With the proliferation of KGs
in real-world applications, problems arise when data in the KG is generated for
different user requirements. The ontology is likely to be incompatible with the
data in the KG because ABox assertions may extend or be incomplete with re-
spect to the ontology. While ABox contents can be adapted to suit a TBox, for
interoperability amongst independent TBoxes, an ABox that is compatible with
a number of TBoxes may be needed. Such overarching TBoxes should support
conversion and exchange for cross-KG harvesting and federated searches.

Fig. 1 illustrates three types of non-compliance between KG and its ontology.
(1) The ABox in the KG only covers a small amount of TBox terminologies, and
its ontology has many unused classes and properties. (2) The ABox in the KG
contains more information than the TBox terminologies, and many terms in
the KG cannot find appropriate classes and properties in its ontology. (3) In a
combination of (1) and (2), the ABox in the KG and the TBox in the ontology are
mismatched and overlapped on both sides. Many application tasks, for example,
KG embedding and ontology learning, are hampered by non-compliance between
KG and its ontology. When using KG embedding for ontology-based KGs, unused
classes and properties in the ontology are noisy data. This results in inaccurate
embeddings for KG terms. Ontology learning is the task of using KG to infer
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ontology classes and properties. KG data is diverse in nature; thus, the new
ontology classes and properties learnt from KG can be different according to
KG instances. These task-specific ontology classes and properties may violate the
FAIR (i.e., Findability, Accessibility, Interoperability, and Reusability) principle
and can be challenging to map and integrate into the original ontology.

Fig. 1. Non-compliance between KG and its ontology.

Current work mainly focuses on either schema matching (e.g., TBox-TBox
compliance) or instance matching (e.g., ABox-ABox compliance). TBox-ABox
compliance is underexplored. While it is questionable whether the TBox is always
compliant with the ABox, ontology-based KGs assume they are compliant by
nature (excluding or ignoring the three types of non-compliance). For this reason,
there is rarely a compliance check in popular KG and ontology modelling libraries
or editors (e.g., RDFLib [2], Protégé [11], and TopBraid Composer [16]). Even
within the Ontology Alignment Evaluation Initiative (OAEI) [12], to the best
of our knowledge, we cannot find tools available to track these mismatches and
overlaps between ABox in the KG and TBox in its corresponding ontology.

2 State of the Art

Ontology-Based KGs describe the traditional design for using ontologies with
KGs, whereby the ontology serves as the schema for the KGs. KGs are gener-
ated using the classes and properties pre-defined in the ontology. In this setting,
ontology-based KGs assume the ontology has established well-defined concepts,
taxonomies, relationships, and domain axioms. Compared with ontology-less
KGs, ontology-based KGs provide more formal representations for data un-
derstanding, organisation, and integration. They also enable improved logical
reasoning, empowered reuse, and enhanced interoperability between different
downstream applications. However, a complete ontology is almost impossible.
Ontology is built on the Open World Assumption (OWA). We cannot assume
an ontology has captured all domain concepts because the absence of concepts
is not non-existence (i.e., these concepts may exist in other ontologies). A “well-
defined” ontology also requires solid verification and validation. There is no gold
standard for dealing with individual differences among opposing viewpoints.

Ontology-Aware KGs follow a reverse way of using ontologies with KGs.
Conceptual components learnt from KGs are used to build or evolve the original
ontology. The paradigm of ontology-aware KGs assumes the KG data is noise-
less. There are two directions for constructing ontology-aware KGs. (1) Ontol-
ogy reshaping is applied to data in the KG only covers part of the concepts in
the ontology. The goal of ontology reshaping is to create a data-oriented local
schemata that preserves the domain ontology knowledge while removing unused
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nodes [18,19]. (2) Ontology enrichment is used where data exists in the KG that
is not covered by the ontology. In this case, the new concepts and relationships
learnt from the KG are registered as new classes and properties in the ontol-
ogy [9,17]. While ontology-aware KGs achieve partial compliance between the
KG and its ontology, they still have some limitations. Concepts that have been lo-
cally reshaped and redefined are task-specific, with limited sharing and reusing
capabilities. Moreover, ontology-aware KGs cannot track the poly-ontological
representation of KGs as they only match one KG to its corresponding ontology.

3 Problem Statement and Contributions

In the real world, KGs and ontologies are mostly incomplete. Neither ontology-
based KGs nor ontology-aware KGs could fully handle the compliance issue
between KGs and ontologies. We plan to propose Ontology-Compliant KGs
to fill this gap. “Compliant” here has two aspects: (1) The terms used in KG are
in line with the definition provided by the ontology. Mismatched terms in the KG
are replaced with the most relevant classes and properties defined in the original
ontology. (2) The size of the ontology complies with the information coverage
of the KG. There are no unused classes or properties. In this work, we also
extend this definition to be ontology compliant across KGs. Joint learning, vector
embedding methods, and pattern-based engineering concepts are employed to
achieve the goal of both internal and external compliance between KGs and
ontologies. Fig. 2 shows the difference between ontology-compliant KGs and the
other two types of ontology-related KGs. While ontology-based and ontology-
aware KGs only consider a one-way connection, in ontology-compliant KGs,
the link between ontology and KG is bidirectional and can be bridged by their
patterns (details are described in Section 6).

Fig. 2. The difference between ontology-compliant KGs and the other two types.

Hypothesis Ontology-compliant KGs have the following unique features:

H1 Given an ontology and a baseline KG, ontology-compliant KGs can eliminate
the unused classes and properties in the ontology and reduce misdefined terms
in the KG (interpreted as Ontology Compliance within KG).
H2 Given a set of ontologies and a baseline KG, ontology-compliant KGs allow
automatic transmission from one schema to another (interpreted as Ontology
Compliance over KGs).
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H3 Given a set of ontologies and a baseline KG, ontology-compliant KGs al-
low different ontology fragment representations via a pattern-based approach.
These ontology fragments are provided with multiple criteria for integration,
evaluation, and selection (interpreted as Pattern-based Compliance).

Research Questions We formulate the related research questions:

RQ1 (wrt H1) How to reconstruct ontology-based KGs into ontology-compliant
KGs, while retaining critical information and primary inference capability but
eliminating unused nodes and reducing misdefined nodes?
RQ2 (wrt H2) How to enable schema-free KGs that can be compliant with
multiple ontologies, using the ontology-compliant KGs to automate and optimise
the ontology alignment and matching process?
RQ3 (wrt H3) How to select the most compliant set of ontology fragments
for KGs? How to capture the different ontology fragment representations using
a pattern-based approach, and evaluate them according to sound criteria from
different useful perspectives?

4 Research Methodology and Approach

Details of preliminary results based on the research methodology and approach
are described in Section 6. This PhD aims to define a generalised approach to
constructing ontology-compliant KGs. We propose to classify three stages of
compliance in ontology-compliant KGs, namely (1) Ontology Compliance within
KG, (2) Ontology Compliance over KGs, and (3) Pattern-Based Compliance. In
each stage, we intend to address the hypothesis and its related research question.
The “building domain” is selected as a case study. We design, implement, and
evaluate our matching algorithms, and analyse their matching performance in
terms of different building use cases and various application-level tasks.

5 Evaluation Plan: A Case Study in the Building Sector

In the context of Industry 5.0 and the Internet of Things (IoT), digitisation and
automation are becoming emerging research areas in the building sector. While
a number of building and building-related ontologies have been developed, data
interoperability issues have become more apparent. Different building ontolo-
gies are developed and maintained by different institutions. These ontologies are
modelled at multiple levels of abstraction for various purposes, and their defi-
nitions are frequently competing and overlapping. Proposed ontology-compliant
KGs would potentially help with the unified vision of building ontologies, where
the data in this domain has complexity and variety in concepts and relations.

6 Preliminary Results

6.1 Ontology Compliance within KG A KG and its ontology share all terms
and topology. However, the concepts and properties defined in KG and ontol-
ogy can be mismatched due to human errors, design choices, or changes in newer
versions. Fig. 3 shows different types of node matching in a snippet of an air han-
dling unit (AHU) system represented by a KG and its ontology Brick Schema [1]
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(abbr. “Brick”). The concepts with green colours are KG classes, while the con-
cepts with yellow colours are ontology classes. Different matching types and
their examples are shown in the table below. These also applied to the property
matching between KG and its ontology. We design Algorithm 1 for building on-
tology compliance within KG. It has two phases: (1) Entity Alignment and (2)
Ontology Reconstruction. We first find non-compliant terms in the KG and re-
place them with the most relevant classes and properties in the original ontology,
assigning a confidence score for each replacement. Then, we find all the related
triples (including constraints and axioms) and restore the ontology hierarchies.

Fig. 3. An example of ontology compliance within KG.

Evaluation The preliminary experiment uses the sample example from the Brick
Schema official website. We synthesise a number of mismatched classes and prop-
erties with different types. The results in Table 1 show that reshaped ontologies
can significantly reduce the original ontology size and increase the number of
used and matched classes. We can also observe a trade-off between the con-
fidence score and the level of matching applied. The confidence score slightly
decreases when the level of matching increases. A potential reason is that Level
3 and Level 4 use learning-based approaches. While they are more powerful at
discovering more pairs of matches, the confidence level of the matching accuracy
highly depends on the models and methods used.

Table 1. Evaluation of algorithm for building ontology compliance within KG.

Type of Ontology & Matching Level Used Entity Matching Rate Confidence

Original Ontology & Matching Lv. 1 0.52% 46.15% 100.00%

Reshaped Ontology & Matching Lv. 1 30.00% 46.15% 100.00%

Reshaped Ontology & Matching Lv. 2 38.46% 76.92% 97.50%

Reshaped Ontology & Matching Lv. 3 42.31% 84.62% 88.00%

Reshaped Ontology & Matching Lv. 4 46.15% 92.31% 78.33%
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Algorithm 1 Building Ontology Compliance within KG

Input: Ontology-based KG, Ontology Onto
Output: Reshaped Onto OntoRE , Confidence µ

/* Phase 1: Entity Alignment */
/* Find all terms in KG */
Concept Set Con S, Relation Set Rel S ← ∅
Con S,Rel S ← findConceptAndRelation(KG)
/* Find all classes and properties in Onto */
Class Set Cls S, Property Set Pro S ← ∅
Cls S, Pro S ← findClassAndProperty(Onto)
/* Divide each naming into a keyword set */
Con S,Rel S ← findKwd(Con S,Rel S)
Cls S, Pro S ← findKwd(Cls S, Pro S)
/* Match classes between KG and Onto */
for i ∈ Con S do

for j ∈ Cls S do
if purelyMatching(i, j) ̸= ∅ then

µi ← 1
else if heuristicMatching(i, j) ̸= ∅
then

µi ← LevenshteinDistance
Con S → i ∧ Con S ← j

else if semanticMatching(i, j) ̸= ∅
then

µi ← Similarity
Con S → i ∧ Con S ← j

else if topologicalMatching(i, j) ̸= ∅
then

µi ← Accuracy
Con S → i ∧ Con S ← j

end if
end for

end for
/* Match properties between KG and Onto */
for k ∈ Rel S do

for l ∈ Pro S do
/* Corresponding procedure applies to
Rel S and Pro S */

end for
end for
/* Calculate total confidence */
Total Confidence µ ← ∅
µ← Avarage(µ1, ..., µi, µ1, ..., µk)
/* Phase 2: Ontology Reconstruction */
/* Find super-classes */
Onto RE Class Set RE Cls S ← ∅
RE Cls S ← findSuperClasses(Con S)
/* Find super-properties */
Onto RE Property Set RE Pro S ← ∅
RE Pro S ← findSuperProperties(Rel S)
/* Restore reshaped ontology */
Reshaped Ontology OntoRE ← ∅
OntoRE ← findTriples(RE Cls S,RE Pro S)

return OntoRE , µ

6.2 Ontology Compliance over KGs It is often the case that a KG may be
restructured to comply with one of several different ontologies, while preserving
the KG’s intended information content, as illustrated in Fig. 4.

Fig. 4. An example of ontology compliance over KGs.

The key task is ontology alignment and matching. Embedding-based meth-
ods are prevalent for exploring the potential matching in graphs due to their
conceptual simplicity and computational operability. However, there are several
challenges when applying the embedding methods to ontology alignment and
matching. Firstly, not all the classes and properties from the original ontology
are useful for KG instance embedding. The unused classes and properties could
be noise for matching. Secondly, the respective KGs have no connection with
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each other. Embedding methods are based on random sampling, meaning the
vector only represents the relative position of the nodes, and the vector number
sets can be different. If two graphs are not tightly connected, the embedding
results are most likely to be incorrect. Thirdly, the majority of the embedding
methods are targeting graphs without schema. They focus more on topologi-
cal matching rather than lexicographic matching. We employ our findings from
ontology-compliant within KG to address the first challenge, and use their com-
pliance as an intermediate link to connect two graphs - the second challenge, and
facilitate lexicographical order - the third challenge. We design Algorithm 2 for
building ontology compliance over KGs. It has three phases: (1) Build ontology
compliance within each KG, (2) Match terms across ontologies, and (3) Match
overlapping terms. Phases 1 and 2 also reuse the Algorithm 1.

Algorithm 2 Building Ontology Compliance over KGs

Input: KG1 and related ontology Onto1,
KG2 and related ontology Onto2

Output: Matching Set Match S(Onto1, Onto2),
Confidence Set µ(µwithin, µover)
/* Phase 1: Compliance within KG */
OntoRE1

, µ1 = withinComp(KG1, Onto1)
OntoRE2

, µ2 = withinComp(KG2, Onto2)
µwithin ← µ1, µ2

/* Phase 2: Match terms across Onto */
/* Create matching set */
Matching Set Match S(Onto1, Onto2)← ∅
/* Follow same procedure in Algorithm 1 */
for i ∈ Con OntoRE1

, k ∈ Rel KG1 do
for j ∈ Con OntoRE2

, l ∈ Rel KG2 do
Match S(Onto1, Onto2), µcmatch ←
Matched Con & Rel, µover ← µcmatch

end for
end for
/* Phase 3: Match overlapping terms */
/* Set a vector space */
Vector space V ecSpace← ∅
/* Put KGs and Onto RE */
for i ∈ KG1, OntoRE1

, KG2, OntoRE2
do

V ecSpace← i
end for
/* Put matched Onto set to build links */
V ecSpace←Match S(Onto1, Onto2)
/* Define embedding models */
Embedding Model Model← X2V ec.train()
/* Define vector set */
Vector Set V ec S ←Model.getEmbeddings()
/* Add predict match for overlapping */
Predict Match P ← ∅
for Unmatched U /∈ Match S(Onto1, Onto2)
do

P, µoverlap ← V ec S.getMostSimilar(U)
Match S(Onto1, Onto2)← (U, P )
µover ← µoverlap

end for
/* Summarise total confidence */
Confidence Set µ← ∅
µ← µwithin

µ← µover

return Match S(Onto1, Onto2),
µ(µwithin, µover)

Evaluation The preliminary experiment is set to predict the similarity of two
overlapping properties, brick:hasPoint in Brick Schema [1] (abbr. “Brick”) and
core:hasCapability in RealEstateCore [8] (abbr. “RECore”). The ground truth
is that the meanings of these two properties are very similar. Their different
names are due to their different views on how building points are embedded in
the building. brick:hasPoint states that the building points are the measurable
data points installed in the building, whereas core:hasCapability stands for the
building points are the capabilities provided by the building to produce and
ingest data. We employ three different vector embedding models to evaluate
the top-k searches. Exp.1 uses the traditional KG embedding without ontology
compliance, and Exp.2 uses our proposed compliance algorithm. Table 2 shows
the results of the comparison in a test run. We can see Exp.2 outperforms Exp.1
in all three sample embedding models, particularly in top-1 and top-3 searches.
6.3 Pattern-Based Compliance Ontology can be decomposed into smaller
ontology fragments. For example, the concepts defined in Brick Schema (abbr.
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Table 2. Evaluation of algorithm for building ontology compliance over KGs.

@k
DeepWalk [13] Node2Vec [6] Struc2Vec [15]

Exp.1 Exp.2 Exp.1 Exp.2 Exp.1 Exp.2

1 0.03± 0.17% 25.86± 4.48% 0.04± 0.20% 15.32± 3.70% 96.88± 1.52% 99.98± 0.14%

3 1.36± 1.07% 57.49± 4.86% 13.4± 3.35% 56.65± 5.28% 100± 0.00% 100± 0.00%

5 7.58± 2.57% 75.51± 4.17% 66.54± 4.85% 84.86± 3.63% 100± 0.00% 100± 0.00%

“Brick”) can be decomposed into three high-level abstraction fragments: Spaces
(i.e., brick:Location), Building Equipment and Systems (i.e., brick:Equipment
and brick:System), and Building Points (i.e., brick:Point). For each fragment,
they can be replaced with the same concepts defined in other building ontologies,
such as RealEstateCore [8] (abbr. “RECore”) and Project Haystack [10] (abbr.
“Haystack”), or building-related domain ontologies, such as BOT [14] for spatial
information, SAREF [4] for equipment and systems, and SSN [3]/SOSA [7] for
building points. Fig. 5 demonstrates an example of KG represented by different
combinations of building and related domain ontologies. These new ontology
fragments can represent the same information as the original ontology, but they
can have different numbers of classes, properties, and hierarchies. If we consider
ontology fragments, the problem of ontology compliance becomes more complex.

Fig. 5. An example of pattern-based compliance.

Fig. 6 shows the architecture of building pattern-based compliance. It has
three main components, namely (1) Pattern Cognition, (2) Pattern Recognition,
and (3) Pattern Optimisation. The basic idea is to extract the concepts, rela-
tionships, and constraints from the ontology-compliant KG. Each of them goes
through a learning and matching process to find their patterns. Then, we inte-
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grate and align the same or similar patterns, and use these generic patterns to
reconstruct new ontology fragments.

Fig. 6. The architecture of building pattern-based compliance.

Evaluation Ontology fragments may have different numbers of namespaces,
levels of abstraction, concept coverage, depth of the class hierarchy, complete-
ness and expressiveness, and performance metrics. Liebig’s law [5] is used for
ontology fragment construction, evaluation, and selection. The multi-criteria se-
lection depends on the minimum criteria being satisfied. We also introduce a
joint-learning approach to evaluate the performance of ontology fragments. An
example is shown in Fig. 7. Ontology Fragment 1, 2, and 3 are generated from the
same KG. We fit them into the embedding model and perform the classification
task according to the original KG. Based on different levels of abstraction, the
classification accuracy of the KG embedding decreases at different rates. Frag-
ment 1 and 2 have higher accuracy in Level 1 and Level 2 abstractions, but they
have a significant drop in Level 3. By contrast, Fragment 3 decreases gradually
at all levels of abstraction.

Fig. 7. A joint approach to evaluate the performance of ontology fragments.

Preliminary results may have slight differences across different platforms and
library versions. The code implementation is available at https://github.com/
qzc438/ontology-compliant-kgs (access will be made available on request).

7 Conclusions

In this paper, we present a new concept of ontology-compliant KGs, showing
promising results in matching and aligning ontologies within KG and over KGs.

https://github.com/qzc438/ontology-compliant-kgs
https://github.com/qzc438/ontology-compliant-kgs
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We also illustrate our design for advanced pattern-based compliance. Further
work will focus on justifying the results with the capability to allow ontology
compliance on large-scale KGs, and implementing pattern-based compliance in a
comprehensive framework that enables automatic ontology fragment integration,
evaluation, and selection for real-world application-level KGs.
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