
Knowledge-based Multimodal Music Similarity

Andrea Poltronieri1[0000−0003−3848−7574]

Department of Computer Science and Engineering, University of Bologna, Italy
andrea.poltronieri2@unibo.it

Abstract. Music similarity is an essential aspect of music retrieval, rec-
ommendation systems, and music analysis. Moreover, similarity is of vital
interest for music experts, as it allows studying analogies and influences
among composers and historical periods.
Current approaches to musical similarity rely mainly on symbolic con-
tent, which can be expensive to produce and is not always readily avail-
able. Conversely, approaches using audio signals typically fail to provide
any insight about the reasons behind the observed similarity.
This research addresses the limitations of current approaches by focusing
on the study of musical similarity using both symbolic and audio content.
The aim of this research is to develop a fully explainable and interpretable
system that can provide end-users with more control and understanding
of music similarity and classification systems.

Keywords: Music Similarity · Computational Musicology · Knowledge
Graphs.

1 Introduction

Music similarity is a central area of research in the field of Music Information
Retrieval (MIR) [11] as it enables various applications, such as music recom-
mendation, playlist generation, music search, and classification. The ability to
measure the similarity between music tracks is essential for providing person-
alised and relevant recommendations to users based on their listening history
and preferences [26]. Music similarity also facilitates the discovery of new music
that matches the user’s taste [28]. Additionally, music similarity can be used for
content-based music classification, such as genre classification [10]. It is also use-
ful in musicological research, as it allows for the exploration of musical patterns
and structures across different styles and genres [36].

1.1 Problem Statement

The study of musical similarity is approached from various perspectives, which
can be summarised in content-based systems and context-based systems [20]. The
former approach extracts information directly from the musical content (whether
symbolic or audio), while the latter obtains information from non-musical data,
such as metadata or information related to the song’s popularity or listener
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characteristics. Content-based approaches allow a quantitative measurement of
similarity based on factual music data, and make it possible to investigate simi-
larities independently of the availability and accuracy of metadata [19].

However, studying content-based similarity poses several challenges, given
the multidisciplinary nature of the research, which encompasses music theory,
ethnomusicology, cognitive science, and computer science [36].

In content-based music similarity, a further distinction must be made con-
cerning the representation of music. Two types of representations have been
identified: signal representations that are recordings of sound sources, and sym-
bolic representations that represent discrete musical events [37]. Symbolic repre-
sentations are context-aware and offer a structured representation from which is
easy to extract information from. On the other hand, signal representations are
content-unaware and not structured, which makes extracting information from
them a challenging task [38]. Signal representations are by far more studied
than symbolic representations, since they are more interesting from a commer-
cial point of view (e.g. for streaming services) and the data availability is higher.

Depending on the type of musical representation, several features can be used
for similarity analysis: descriptive metadata, low-level features, and high-level
features [39]. Descriptive metadata is text-based information about the song,
while low-level features are extracted from the audio signal (e.g., beat, tempo)
and are efficient but difficult to interpret. High-level features, on the other hand,
are content descriptors that reflect the knowledge of experienced or professional
listeners, making them the most intuitive approach for music classification tasks.

Most of the available music similarity systems, especially those based on
audio signals [36], rely on low-level features. Annotating high-level content de-
scriptors is also expensive and requires the expertise of musicians and musi-
cologists [35]. As a result, most available systems cannot explicitly recognise
similarity motives, and their lack of interpretability and transparency can lead
to biased recommendations.

This results in a measure of similarity that is neither interpretable nor trans-
parent, which may result in biased results [21].

1.2 Expected Contribution

This research proposes a fully explainable and interpretable system that provides
information on musical similarity based on both symbolic and audio content,
with a focus on factual musical data such as melodic and harmonic patterns.

RQ1 What is an effective method to create high-quality datasets that incorporate
multimodal data that links symbolic annotations (both melodic and harmonic)
and audio?

To achieve this, the symbolic content needs to be studied first to assess
similarity in a transparent and explainable way.

RQ2 How can similarity measures be derived from this knowledge graph in order
for it to be objectively measured and quantified?
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Next, an alignment of the symbolic content with the audio signal using mul-
timodal datasets must be performed. Finally, a deep learning system is trained
to analyse the audio signal informed by the symbolic content. By doing so, it is
possible to provide end-users with more control and understanding of the music
similarity and classification systems they use, regardless of the representation
under analysis.

RQ3 How can score-informed audio analysis be used to identify similarities and
patterns in audio data, and what are the benefits of this approach for the
study of music similarity?

The current study focuses on the application of Semantic Web technologies,
particularly in the representation and alignment of multimodal data. One of
the key challenges is how to effectively encode knowledge graphs (KGs) to en-
able their use as input and mapping onto various mathematical models, such as
timeseries and embedding.

2 Related Works

2.1 Symbolic Music Similarity

The study of similarity on symbolic content has been studied in depth in recent
years. Various approaches have been proposed, ranging from harmonic similarity
to melodic and rhythmic similarity.

Melodic similarity is the most extensively researched category. Algorithms
that handle melodic similarity in symbolic form are typically rule-based and aim
to define various types of context-dependent similarity functions, which rely on
music theory [30]. However, these algorithms lack a shared definition of similarity
and primarily focus on studying similarity in monophonic sequences [36].

On the other hand, algorithms for harmonic similarity has not received much
attention in recent years. To the best of my knowledge, current state-of-the-art
methods for this task are the Tonal Pitch Step Distance (TPSD) [15] and the
Chord Sequence Alignment System (CSAS) [16]. These studies consider tracks
similar only if their harmonic profiles are globally aligned, providing no infor-
mation on local similarity.

Studies using a combination of harmonic and melodic content to calculate
similarity are limited to a few contributions [14].

2.2 Audio Music Similarity

Music similarity in the audio signal domain has been studied for a wide range
of applications, ranging from cover song identification [32] to recommendation
systems [12]. These algorithms are based on the extraction of low-level features
directly from the signal, such as spectrograms, MFCCs and Chorma Features
[13].
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One of the main limitations of these approaches is their reliance on deep
learning approaches. These methods are based on end-to-end algorithms that
do not provide valuable information regarding fundamental aspects of similarity,
such as the explanation for why two or more tracks are similar, and the highlight
of parts in common between different tracks.

2.3 Multimodal Music Similarity

Multimodality refers to the integration of multiple representation modes, such
as visual, auditory, and textual.

In the realm of music, multimodality has become an increasingly popular field
of research in recent years and has proven to provide better results in different
tasks, if compared to approaches that consider a single modality [3, 33].

One of the primary areas of research in multimodal MIR is the integration
of audio and textual data. Moreover, multimodality has been explored also for
other tasks, such as audio-to-score alignment [29] and classification [22].

However, less emphasis has been placed on algorithms that combine audio
and symbolic annotations, particularly in the field of classification and similarity.
Some methods, like [2] and [34], aim to identify audio tracks through symbolic
queries, but they rely on converting either audio into symbolic or symbolic into
audio, respectively. In contrast, [24] proposes a score-informed analysis of au-
dio. Although this approach represents a promising development, it has to be
considered a preliminary study, with a small sample size of only 20 violin-only
tracks.

3 Research Metodology

The primary objective of this research is to develop algorithms that can accu-
rately measure musical similarity based on both audio and symbolic content.
The proposed approach will consider factual musical data and provide an inter-
pretable model for computing music similarity between music pieces.

Dataset creation. To achieve this goal, the first step is to create a multimodal
dataset, which includes various types of data for each song in the dataset (c.f.
RQ1 ). Specifically, the dataset must consist of four key elements for each track:
(i) an audio track, (ii) melodic annotations, (iii) harmonic annotations, and
(iv) track metadata.

The dataset will be encoded as a RDF/OWL Knowledge Graph (KG) [7],
which will define semantic relationships between the various multimodal ele-
ments. The KG will also contain alignment data between different types of an-
notations, such as audio, melodic and harmonic data.

Similarity computation. Similarity measures based on symbolic data will
then be defined (c.f. RQ2 ), focusing on both melodic and harmonic elements.
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To achieve this, it is first necessary to define the concept of music similarity both
musicologically and perceptually. First, repositories and datasets of known pat-
terns will serve as a basis for the definition of similarity functions. Then, various
types of matches, such as exact and fuzzy matches, will be considered between
symbolic annotations at different levels, such as phrases, form, cadences, and
melodies. This approach enables the investigation of musical similarity from a
purely musical perspective, which would allow to the resulting similarity func-
tions to be both explainable and transparent.

The research will also enable the definition of local similarities, allowing for
the analysis of influences between different songs, as well as the detection of
plagiarism in specific song sections. Moreover, the similarity analysis will be
conducted by jointly analysing the harmonic and melodic data to provide more
realistic and musicologically grounded similarity information.

Multimodal analysis. In the final step, the similarities extracted from the
symbolic data will be used to study similarity on the audio signal. This will
involve training deep learning architectures on the aligned audio and symbolic
data through the application of data fusion techniques (c.f. RQ3 ). Great care
will be given in selecting an architecture that is both explainable and allows
for analogies to be drawn between the various components of the multimodal
analysis, such as deep learning architectures and neuro-symbolic reasoning.

An architecture that will be explored is transformers [9], which in this context
can be employed for the unsupervised matching between symbolic annotations
and audio features. Hence, the produced unsupervised model will be fine-tuned
using the similarity measures extracted from the symbolic annotations.

3.1 Evaluation

The validation of the results obtained will focus on two main elements: (i) sim-
ilarity measures based on symbolic content; and (ii) similarity based on audio
signals.

Firstly, the similarity measures calculated on symbolic content will be eval-
uated to determine if the output of the defined similarity functions produces
a musicologically or perceptually relevant output. Moreover, known pattern
datasets [1, 27] will be used to evaluate the output of the similarity measures.
Secondly, crowdsourced surveys will be conducted to gather more data on the
perceptual relevance of the extracted similarities.

Regarding the similarities calculated on audio signals, global results will be
evaluated on typical music information retrieval tasks, such as cover song de-
tection. For local similarities, the audio extracted similarities will be evaluated
using the symbolic-aligned data.

Similarly, we will assess the transparency and explainability of the model.
While the explainability of the symbolic similarity models is inherent in their
design, the explainability of the model on audio signal will be evaluated by
comparing the results to the aligned symbolic annotations.
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4 Current Results

As initial contributions to the development of this research project, work was
conducted on several fronts, including the creation of a dataset, the study of har-
monic similarity, the embedding of harmonic annotations, and the construction
of ontologies for modeling musical content.

4.1 Dataset creation

As the first contribution of my research, I focused on the creation of a dataset of
harmonic annotations (c.f. RQ1): ChoCo, the largest available Chord Corpus [4].
Choco is a large-scale dataset that semantically integrates harmonic data from
18 different sources in various representations and formats (Harte, Leadsheet,
Roman numerals, ABC). The corpus leverage JAMS (JSON Annotated Music
Specification) [18], a popular data structure for annotations in Music Information
Retrieval, to effectively represent a variety of chord-related information (chord,
key, mode, etc.) in a uniform way. ChoCo also consists of a converter module
that takes care of standardising chord annotations into a single format, the
Harte Notation [17]. On top of it, a novel ontology modelling music annotations
and involved entities (artists, scores, etc.) has been proposed, and a 30M triple
knowledge graph1 has been built.

The proposed workflow is highly scalable and enables the seamless integration
of additional data types, including melodic and structural annotations. More-
over, the Knowledge Graph utilised in ChoCo facilitates the alignment of its
annotations with various metadata available on the web, such as MusicBrainz2

and Discogs3.
As a result, these resources provide an accurate and distinct reference point

for each track, which will allow the identification of the audio recording which
refers to the annotations contained in the dataset.

4.2 Studies on Harmonic Similarity

In accordance with the second research question (RQ2), a preliminary investi-
gation into the similarity measures has been conducted.

Based on the limitations found in the state-of-the-art study of harmonic sim-
ilarity, I worked on LHARP, a Local Harmonic Agreement of Recurrent Patterns.
LHARP is a measure of harmonic similarity formulated for emphasising shared
repeated patterns among two arbitrary symbolic sequences, thereby providing
a general framework for the analysis of symbolic streams based on their local
structures.

To evaluate the efficacy of LHARP as a method for harmonic similarity, two
separate experiments were carried out – each pertaining to a case study that the

1 ChoCo SPARQL Endpoint: https://polifonia.disi.unibo.it/choco/sparql
2 MusicBrainz: https://musicbrainz.org/
3 Discogs: https://www.discogs.com/
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Fig. 1. Workflow used for the production of the Harmonic Memory (Harmory).

function can potentially accommodate. First, a graph analysis was performed
to encode harmonic dependencies (edges) between music pieces (nodes) based
on their similarity values. Second, to conform with the literature, a cover song
detection experiment was conducted.

As an evolution of LHARP, I worked on the Harmonic Memory (Harmory)
[5]. Harmory is a Knowledge Graph (KG) of harmonic patterns extracted from
a large and heterogeneous musical corpus. By leveraging a cognitive model of
tonal harmony, chord progressions are segmented into meaningful structures, and
patterns emerge from their comparison via harmonic similarity. Akin to a music
memory, the KG holds temporal connections between consecutive patterns, as
well as salient similarity relationships (c.f. Figure 1).

During the creation of Harmory, I focused on the developement of both har-
monic segmentation and harmonic similarity state-of-the-art algorithm.

Digital Signal Processing (DSP) algorithms were used to perform harmonic
segmentation on symbolic content. Tonal Pitch Space (TPS) [23] was used to
encode the harmonic sequences and generate a Self-Similarity Matrix (SSM) [6],
from which a novelty curve was extracted to identify the harmonic segment
boundaries [29].

Additionally, a new algorithm for computing harmonic similarity using Dy-
namic Time Warping (DTW) [31] on TPS-encoded sequences was proposed,
which is more efficient than the previous state-of-the-art approach [15].

4.3 Music Chord Embeddings

Another aspect of my work involved the definition of embeddings to enable the
expressive encoding of harmonic annotations. To achieve this goal, I developed
pitchclass2vec, a novel type of embedding that effectively preserves the harmonic
characteristics of a chord.

The efficacy of this embedding was evaluated in a Music Structure Analysis
task, where it outperformed other approaches, including those based on chord
encoding [25] or textual encoding [8].

4.4 Semantic Integration of Musical Data

For the development of the aforementioned works, ontologies were created to
model various types of data related to the music domain. These works respond
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to RQ1, and aim to provide new methods for the representation of musical
knowledge. These ontologies include the JAMS Ontology , which models musical
notations (such as chords, patterns, and musical structures), the Roman Chord
Ontology , which models chords expressed in Roman numeral notation, and the
Music Note Ontology , which models musical notes and their realisation (i.e.,
the note played in a performance). These ontologies are part of an ontological
framework named Polifonia Ontology Network (PON).

5 Conclusion and Next Steps

This paper presents a research project that employs a symbolic-informed archi-
tecture to study music similarities on audio signals. This allows an explainable
and interpretable musically-grounded analysis of similarities in music which can
be performed both on symbolic annotations and audio signal.

The use of Knowledge Graphs (KG) and Semantic Web tools is crucial to this
research as they provide a foundation for data alignment and interoperability
across various data types.

Moving forward, the research will focus on expanding the dataset (as de-
scribed in Section 4.1) by incorporating new data types, such as melodic data
and audio signals, into the knowledge graph. This will facilitate exploration of
novel similarity functions that enable the study of symbolic data, integrating
diverse musical elements such as melody, harmony, and structure.

Subsequently, the research will aim to align the produced data with audio
signals, with the objective of training a model informed by symbolic data that
is capable of analysing similarity on audio signals.

Finally, a crucial objective of this study is to extend the ontological mod-
els developed to enable multimodal analysis of other data types and in other
domains.
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