
GLENDA: Querying RDF Archives with full
SPARQL

Olivier Pelgrin1[0000−0002−1025−9687], Ruben Taelman2[0000−0001−5118−256X],
Luis Galárraga3[0000−0002−0241−5379], and Katja Hose1,4[0000−0001−7025−8099]

1 Aalborg University, Denmark, {olivier,khose}@cs.aau.dk
2 Ghent University, ruben.taelman@ugent.be

3 Inria, France, luis.galarraga@inria.fr
4 TU Wien, Austria, katja.hose@tuwien.ac.at

Abstract. The dynamicity of semantic data has propelled the research
on RDF Archiving, i.e., the task of storing and making the full history of
large RDF datasets accessible. However, existing archiving techniques fail
to scale when confronted with very large RDF datasets and support only
simple SPARQL queries. In this demonstration, we therefore showcase
GLENDA, a system that can run full SPARQL 1.1 compliant queries over
large RDF archives. We achieve this through a multi-snapshot change-
based storage architecture that we interface using the Comunica query
engine. Thanks to this integration we demonstrate that fast SPARQL
query processing over multiple versions of a knowledge graph is possible.
Moreover, our demonstration provides different statistics about the his-
tory of RDF datasets that can be useful for tasks beyond querying and
by providing insights about the evolution dynamics of the data.

Keywords: RDF archives · SPARQL · RDF · temporal queries · versioned
queries · time-travel queries · versioning

1 Introduction

Despite most approaches assuming RDF datasets on the Web to be static and
providing optimizations for this case, in reality most RDF datasets are consis-
tently evolving [3,5]. Although there has been some work on archiving, where
the focus has been more on storing previous versions, research has not yet been
paid much attention to efficiently querying past versions of a knowledge graph
without depending on specific system setups [1].

A straightforward way to keep track of the history of RDF data is to store
each revision of the dataset as an independent copy. Intuitively, this does not
scale well and can become prohibitive for large RDF datasets with long histories.
While few efficient solutions for RDF archiving have been proposed [6,9], they
support queries on single triple patterns only. This means that executing full
SPARQL queries on RDF archives still requires additional post-processing.

In this demo paper, we therefore present GLENDA, a system for execut-
ing full SPARQL queries over RDF archives. GLENDA is built on top of a



2 Pelgrin et al.

Web GUI

Query Engine 
(Comunica)

Storage Layer 
(OSTRICH)

Triple 
patterns

Triples 
streams

Triple 
bindings

SPARQL 
query

SPARQL Endpoint 
Connection

Storage 
API

(a) GLENDA components.

Snapshot ∆ ∆

0 1

Snapshot ∆ ∆

2 3 4

(b) Storage layer’s architecture.

Fig. 1: GLENDA architecture and components

multi-snapshot change-based storage system for RDF archives [6] that has been
integrated with the Comunica [11] SPARQL engine. In the remainder of this
paper, we first detail the technical architecture of GLENDA in Section 2. Then,
we describe and illustrate GLENDA’s main functionalities in Section 3. Finally,
we conclude and discuss future work in Section 4.

2 The GLENDA system

Overview. At its core, GLENDA is composed of three distinct and indepen-
dents components, namely (i) a storage layer composed and an RDF archive
store, (ii) a query engine that communicates with the storage layer via an API,
and (iii) a user interface in the form of a web application. The query engine is
accessible by the client through a SPARQL endpoint.

Figure 1a illustrates the high level architecture of GLENDA. The user in-
teracts with a web-based GUI, where they can write SPARQL 1.1 [8] compliant
queries. The query engine is exposed through a SPARQL endpoint with support
for versioned queries. The query engine decomposes the full SPARQL query
written by the user into versioned triple pattern queries that can be executed
natively by the storage layer, which returns answers as triple streams.

Storage layer. We make use of an extension of the OSTRICH [6] system as
storage layer. OSTRICH is a scalable engine for RDF archiving that stores the
history of an RDF dataset in a single delta chain. A delta chain is comprised of
an initial snapshot followed by a sequence of aggregated changesets (Figure 1b).
OSTRICH supports versioned queries on single triple patterns with optional
offsets. It also provides efficient cardinality estimations for triple patterns. We
resort to an extension of OSTRICH, presented in [6], that models revision his-
tories using multiple delta chains. As shown in [6], this improves the ingestion
time of new revisions drastically – in particular for very long histories.

Query engine. We chose the Comunica [11] query engine to build our
SPARQL endpoint. Comunica is a modular, high-performance RDF query engine
with full support for the SPARQL 1.1 standard. Building on top of the work from
Taelman et al. [10], we opted for a minimal change to the SPARQL language, as



GLENDA: Querying RDF Archives with full SPARQL 3

a full extension is outside the scope of this demonstration. The semantic of the
GRAPH keywork is changed so that it references versions instead of graphs. We
implemented support for three standard types of versioned SPARQL queries [2]
described in the following.

– Version Materialization (VM). These are queries over a specific version
of the RDF Archive. These queries use the notation GRAPH <version:k>
for k ∈ {0, 1, . . .}.

– Delta Materialization (DM). These are SPARQL queries over the
changeset between two versions. This is achieved by using the notation for
VM queries in combination with the FILTER (NOT EXISTS) construct.

– Version Queries (VQ). These are SPARQL queries that yield version-
annotated query results. They resort to the notation GRAPH ?version.

User Interface. We build our GUI as a regular web-page using HTML, CSS,
and Javascript. We resort to the Yasgui5 library for the SPARQL query interface,
and the Plotly6 library for our graphics and visualizations. More details about
the user interface and its functionalities can be found next in Section 3.

3 Demonstration of GLENDA

We now demonstrate the capabilities of GLENDA on the BEAR-C dataset [2],
which provides 32 snapshots from the Open Data Portal Watch project [4] to-
gether with ten full SPARQL queries . To the best of our knowledge, no publicly
available system is currently capable of running the queries of this benchmark.

Figure 2a depicts GLENDA’s query interface, where the user can write and
execute SPARQL 1.1 queries, optionally using our versioning constructs. The
queries from the BEAR-C benchmark can be chosen from the dropdown menu
on top. The query type can be chosen among VM, DM and VQ queries, and the
provided sliders can help the user chose the versions to query.

By selecting the tab “Statistics”, the user can have access to various statistics
about the underlying dataset (Figure 2b). These are state-of-the-art metrics that
describe the dynamics of an RDF archive [5]. Explanations for the metrics are
available as tooltips triggered by hovering the mouse over the metric’s name. A
video showing all the capabilities of GLENDA can be found on YouTube7. The
system is publicly available at https://glenda.cs.aau.dk and more information
can be found on our project webpage8.

4 Conclusion

We have presented GLENDA, a system to execute full SPARQL queries on RDF
archives. We detailed the technical makeup of the system and how its different

5 https://triply.cc/docs/yasgui-api
6 https://plotly.com/javascript/
7 https://youtu.be/DoNjw3V6oSo
8 https://relweb.cs.aau.dk/glenda/



4 Pelgrin et al.

(a) GLENDA main page and query interface.

(b) GLENDA statistics page.

Fig. 2: GLENDA’s user interface



GLENDA: Querying RDF Archives with full SPARQL 5

components interact with each other. We explained how queries over archives
can be executed with full SPARQL 1.1 via the use of special URIs for named
graphs. GLENDA presents itself as a web interface to the user, with user-friendly
tools to build and execute queries over RDF archives. We have demonstrated,
GLENDA’s capabilities on the BEAR-C dataset and queries, which no other
system can currently fully support.

In our future work we have planned to consider the development and study
of alternative snapshot strategies. Moreover, we envision to reduce the required
storage space via more efficient serialization techniques for timestamped deltas.
We also expect to improve query processing with advanced RDF representations
and novel indexing approaches [7]. Similarly, we envision to study the use of ded-
icated extensions to the SPARQL language for versioned queries, which would
allow for greater flexibility in the querying process, while enabling the simulta-
neous use of graphs and versions. Finally, we plan to improve the performance
of the system further by implementing a more efficient streaming of the results
from the storage layer to the query engine.

Acknowledgements. This research was partially funded by the Danish Council
for Independent Research (DFF) under grant agreement no. DFF-8048-00051B,
the Poul Due Jensen Foundation, and the TAILOR Network (EU Horizon 2020
research and innovation program under GA 952215). Ruben Taelman is a post-
doctoral fellow of the Research Foundation – Flanders (FWO) (1274521N).

References

1. Aebeloe, C., Montoya, G., Hose, K.: ColChain: Collaborative Linked Data Net-
works. In: WWW. pp. 1385–1396. ACM / IW3C2 (2021)

2. Fernández, J.D., Umbrich, J., Polleres, A., Knuth, M.: Evaluating query and stor-
age strategies for RDF archives. JWS 10(2), 247–291 (2019)

3. Hose, K.: Knowledge Graph (R)Evolution and the Web of Data. In: MEP-
DaW@ISWC. pp. 1–7 (2021)

4. Neumaier, S., Umbrich, J., Polleres, A.: Automated quality assessment of metadata
across open data portals. JDIQ 8(1), 2:1–2:29 (2016)

5. Pelgrin, O., Galárraga, L., Hose, K.: Towards fully-fledged archiving for RDF
datasets. SWJ 12(6), 903–925 (2021)

6. Pelgrin, O., Taelman, R., Galárraga, L., Hose, K.: Scaling Large RDF Archives To
Very Long Histories. In: ICSC (2023)

7. Sagi, T., Lissandrini, M., Pedersen, T.B., Hose, K.: A design space for RDF data
representations. VLDB Journal 31(2), 347–373 (2022)

8. Seaborne, A., Harris, S.: SPARQL 1.1 query language. W3C recommendation,
W3C (2013), http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

9. Taelman, R., Sande, M.V., Herwegen, J.V., Mannens, E., Verborgh, R.: Triple
Storage for Random-access Versioned Querying of RDF Archives. JWS 54, 4–28
(2019)

10. Taelman, R., Sande, M.V., Verborgh, R.: Versioned querying with OSTRICH and
comunica in MOCHA 2018. In: SemWebEval@ESWC. vol. 927, pp. 17–23 (2018)

11. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
modular sparql query engine for the web. In: ISWC (2018)


