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Abstract. Whyis is the first open source framework for creating custom
provenance-driven knowledge graph applications, or KGApps, support-
ing three principal tasks: knowledge curation, inference, and interaction.
It has been used in knowledge graph projects in materials science, health
informatics, and radio spectrum policy. All knowledge in Whyis graphs
are encapsulated in nanopublications, which simplifies and standardizes
the production of qualified knowledge in knowledge graphs. The archi-
tecture of Whyis enables what we consider to be essential requirements
for knowledge graph construction, maintenance, and use. These require-
ments include support for automated and manual curation of knowledge
from diverse sources, provenance traces of all knowledge, domain-specific
user interaction, and generalized distributed knowledge inference. We
coin the term “Nano-scale knowledge graph” to refer to nanopublication-
driven knowledge graphs. Knowledge graph developers can use Whyis to
configure custom sets of knowledge curation pipelines using custom data
importers and semantic extract, transform, and load scripts. The flexi-
ble, nanopublication-based architecture of Whyis lets knowledge graph
developers integrate, extend, and publish knowledge from heterogeneous
sources on the web. Whyis KGApps and are easily developed locally,
managed using source control, and deployable via continuous integra-
tion, server deployment scripts, and as docker containers.
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1 Introduction

Knowledge graphs have become an important component of commercial and re-
search applications on the Web. Google was one of the first to promote a semantic
metadata organizational model described as a “knowledge graph,” [33] and many
other organizations have since used the term in the literature and in less formal
communication. We believe that that successful knowledge graph construction
requires more than simply storing and serving graph-oriented data, or even data
in the Resource Description Format [6] or Linked Data [4]. Knowledge graphs
need to be easily maintainable and usable in sometimes complex application set-
tings. For instance, keeping a knowledge graph up to date can require developing
a knowledge curation pipeline that either replaces the graph wholesale whenever
updates are made, or requires detailed tracking of knowledge provenance across
multiple data sources. Additionally, applying reasoning systems to graphs from
diverse, potentially conflicting sources becomes very difficult, which has resulted
in investigations of new kinds of reasoning paradigms [19].

Beyond this, it is becoming clear that other sorts of knowledge inference have
become important to knowledge graph construction. NLP methods and other
machine learning methods are commonly demonstrated as potential sources of
knowledge graph construction. User interfaces are also key to the success of a
knowledge graph, especially when supporting computational users. It is insuffi-
cient simply to provide a SPARQL endpoint or to list out the statements relevant
to a single entity for most tasks. Google’s knowledge graph, for instance, takes
the semantic type of the entity into account when rendering information about
that entity. Domain-specific APIs also help smooth the integration of knowledge
graphs into existing systems. Finally, these challenges are dependent on high-
quality knowledge provenance that is inherent in the design of any knowledge
graph system, and not merely an afterthought.

The above challenges are not currently met by a reusable knowledge graph
framework or architecture. We have therefore developed Whyis as a framework
for developing knowledge graphs to support the above challenges. As shown in
Figure 1, Whyis provides a semantic analysis ecosystem: an environment that
supports research and development of semantic analytics that we have previously
had to build custom applications for [21, 23]. Users interact through a suite of
views into the knowledge graph, driven by the type of node and view requested
in the URL. Knowledge is curated into the graph through knowledge curation
methods, including Semantic ETL, external linked data mapping, and Natural
Language Processing (NLP). Autonomous inference agents expand the available
knowledge using traditional deductive reasoning as well as inductive methods
that can include predictive models, statistical reasoners, and machine learning.
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We review case studies of projects that have used Whyis for knowledge graph
development in materials science, health informatics, and radio spectrum policy.
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Fig. 1: The semantic ecosystem enabled by the Whyis framework for knowledge
creation, interaction, and inference.

2 Approach

Whyis is a framework for developing nano-scale knowledge graph applications. It
is a code-focused approach that enables software developers to create knowledge
graph applications (KGApps) using minimal modifications, allowing for the use
of code-oriented deployment and management tools like GitHub, Docker, and
other DevOps tools. While it is possible and useful to use Whyis 2 to create
KGApps without changing any code, much of the customization capabilities
will only be useful if it is customized to some degree. We expect that most
knowledge graph creators will use Javascript and Python to customize their
KGApp for better user interaction, knowledge curation, and inference. In the
software industry, this is called a low code/no code approach, allowing creators
of knowledge graphs to do so without coding, but if they need to add code, it
would be minimal.

Nano-scale knowledge graphs use nanpublications to encapsulate every piece
of knowledge introduced into knowledge graphs it manages. Introduced in [24]
and expanded on in [10], a nanopublication is composed of three named RDF
graphs: an Assertion graph, knowledge encoded in RDF (which can be however
many RDF statements as appropriate); a Provenance graph, which explains
what the justification for the assertion is, and a Publication Info graph, which
provides publication details, including attribution, of the nanopublication it-
self. We see knowledge graphs that include the level of granularity supported
by nanopublications (thus nano-scale) as essential to fine-grained management
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of knowledge in knowledge graphs that are curated and inferred from diverse
sources and can change on an ongoing basis. Other systems, like DBpedia [1]
and Uniprot [28], have very rough grained management of knowledge using very
large named graphs, which limit the ability to version, explain, infer from, and
annotate the knowledge.
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Fig. 2: The Whyis technology stack. Nanopublications are stored in the RDF
database. Files can be uploaded and stored in a special File Depot instance as
well. Celery is used to invoke and manage a set of autonomic inference agents,
which listen for graph changes and respond with additional nanopublications.
Users interact with the graph through a set of views that are configured by node
type and are based on the Flask templating system Jinja2.

2.1 Whyis 2 changes and improvements

While Whyis 1 was only available as a Flask application, Whyis 2 is available
as a python package through the Python Package Index as “whyis”, and can
be installed using Python 3.7 or later. Whyis 2 provides a number of additional
capabilities and modes of operation above Whyis 1. It is now possible to run
Whyis in “embedded” mode, which does not require users to install system ser-
vices for Celery, Redis, and Fuseki. It also provides a number of auto-generated
deployment scripts to create production servers from initial KGApps with mini-
mal customization. We also included the ability to back up and restore KGApp
RDF databases and file repositories to improve deployment and maintenance of
production knowledge graphs. In order to improve long-term support, we also
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migrated Whyis from Blazegraph, which hadn’t been recently maintained, to
Fuseki, which is still being actively improved. We also found Fuseki to be the
only RDF database that could sustain ongoing edits while still providing per-
formant read access to the database. Since it uses Apache Jena Fuseki, it also
requires Java JDK 11 or later. Whyis 2 is also available as a Docker hub image
using the tag “tetherlessworld/whyis”, and has detailed documentation available
at https://whyis.readthedocs.io.

2.2 Architecture

Whyis is written in Python using the Flask framework, and uses a number of
existing infrastructure tools to work, as shown in Figure 2. The RDF database
used by default is Apache Jena Fuseki,1 which provides for modular enhancment
for additinal capabilities. Whyis uses the SPARQL 1.1 Query [11], and Graph
Store HTTP Protocols [25]. Any RDF database that supports those protocols can
be a drop-in replacement for Fuseki. A read-only SPARQL endpoint is available
via ‘/sparql’, along with a Yet Another SPARQL GUI (YASGUI)-based UI [29].

Storage is provided using the FileDepot Python library2 to provide file-based
persistence of uploaded files. FileDepot abstracts the storage layer to config-
urable backends, handles storage of content type, file names, and other metadata,
and provides durable identifiers for each file. It provides backends for a number of
file storage methods, including local files, Amazon S3,3 MongoDB GridFS,4 and
relational databases. Whyis also relies on a task queuing system called Celery5

that can be scaled by adding more task workers on remote machines.

Knowledge graph developers create a new KGApp by simply running the
“whyis” command in an empty directory. The system will generate a python
module that contains the configuration, templates, and starter code files that
allow developers to customize Whyis to their purposes. Views, templates, and
code all live within this revision control-friendly Python project to better enable
the management and staging of a production system.

To illustrate the capabilities and structure of Whyis, we created a demon-
stration knowledge graph of characters and their interactions from the novel Les
Miserables, as originally created by Donald Knuth and maintained by Media and
Design Studio6 The demonstration graph is available at the Example Project
URL. We have loaded the graph with an initial description of the network as a
dcat:Dataset,7, as shown in Figure 3.

1 https://jena.apache.org/documentation/fuseki2/
2 http://depot.readthedocs.io
3 https://aws.amazon.com/s3
4 https://docs.mongodb.com/manual/core/gridfs
5 http://www.celeryproject.org
6 Available at https://github.com/MADStudioNU/lesmiserables-character-network.
7 https://github.com/whyiskg/les-mis-demo/blob/main/data/les-miserables.ttl
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Fig. 3: A rendering of the dcat:Dataset “Les Miserables Character Network Data”
with its nanopublication. Metadata is uploaded to the system to allow for future
discovery, download, and/or processing. The “Publication Info” graph traces
that the assertion was created by the user ’jpmccu’ on 2022-12-19, which was
captured automatically. There is no other provenance of the graph.

2.3 Enabling Knowledge Curation

Whyis supports knowledge curation through several pipelines: direct user in-
teraction, direct loading of RDF, semantic ETL (sETL) scripts, semantic data
dictionaries, and on-demand loading of linked data from the linked data web.
These approaches can be mixed and matched as needed by knowledge graph
developers.

Users can interact with the default Whyis user interface to annotate graph
entities with links between entities (using defined Object Properties), add at-
tributes to entities (using Datatype Properties), and add types to entities (using
OWL or RDFS Classes). Users can also upload pre-generated RDF using the
web interface or KGApp developers can use the whyis load command available
from the command line.

A commonly used approach to integrate knowledge into a KGApp is using the
Semantic Extract, Transform, and Load-r (SETLr) [20] to support conversion of
tabular data, tabular and non-tabular JSON, XML, HTML, and other custom
formats (through embedded python) into RDF suitable for the knowledge graph,
as well as transforming existing RDF into a better desired representation. By
loading SETL scripts (written in RDF) into the knowledge graph, the SETLr
inference agent is triggered, which runs the script and imports the generated
RDF. SETLr itself is powerful enough to support the creation of named graphs,
which lets users control not just nanopublication assertions (as would be the
case if they were simply generating triples), but also provenance and publication
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info. SETLr in Whyis also supports the parameterization of SETL scripts by file
type. Users can upload files to nodes by HTTP POSTing a file to a node’s URI.
The node then represents that file. When adding new metadata about that node,
it can include rdf:type. If a file node has a type that matches one that is used in
a SETL script, the file is converted using that script into RDF. This lets users
(and developers) upload domain-specific file types to contribute knowledge.

Another way to import knowledge is for domain specialists to write Semantic
Data Dictionaries (SDDs) [27], and link them to uploaded data files. A SDD is
an Excel spreadsheet that abstracts away the particulars of RDF modeling to
allow for domain scientists to describe data at a level of abstraction they are
familiar with. The SDDAgent looks for SDDs attached to data files, and is able
to compile a SETL script for the SETLr agent to process. The end result is that
users can write high-level descriptions of their data, while gaining the scalability
benefits of writing a SETL script by hand. The structure8 needed to process the
two SDDs used in the Les Miserables knowledge graph are shown in Figure 3.

The last to import knowledge is to configure an on-demand Linked Data
importer. Whyis provides a flexible Linked Data importer that can load RDF
from remote Linked Data sources by URL prefix. We have successfully tested
use of this importer with DOI [26], OBO Foundries [34], Uniprot [28], DBPedia
[1], and other project-specific resources. It supports the insertion of API keys,
content negotiation, and HTTP authentication using a netrc file. It tracks the
last modified time of remote RDF to only update when remote data has changed
and provides provenance indicating that the imported RDF prov:wasQuotedFrom
the original URL. Examples are available in the default configuration file in the
NAMESPACES entry.9 Whyis also provides a file importer that, rather than
parsing the remote file as RDF, loads the file into the file depot. This can be
invoked on-demand, so that metadata can be loaded from one SETL script about
a collection of files, then other SETL scripts can process those files based on
the types added, and the files would be dynamically downloaded to Whyis for
processing.

2.4 Enabling Knowledge Interaction

To support the Knowledge Interaction user stories, developers of Whyis knowl-
edge graphs can create custom views for nodes by both the rdf:type of the node
and the view URL parameter. These views are looked up as templates and ren-
dered using the Jinja2 templating engine.10 This is configured in a turtle file in
the KGApp directory (vocab.ttl), where viewed classes and view properties are
defined. For more details, please see the view documentation.11

Through the use of nanopublications, developers can provide explanation
for all assertions made in the graph by accessing the linked provenance graph

8 https://github.com/whyiskg/les-mis-demo/blob/main/data/les-miserables.ttl
9 https://github.com/tetherless-world/whyis/blob/main/whyis/config/default.py

10 http://jinja.pocoo.org/docs/2.10
11 https://whyis.readthedocs.io/en/latest/views.html
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when a user asks for more details. Search is also supported through an entity
resolution-based autocomplete and a full text search page.

Whyis provides a number of built-in views that can be customized as needed.
In Figure 4, we see standard entity views (Figures 4a and 4b). Whyis also pro-
vides the ability to create custom visualizations using a SPARQL query and
Vega Lite [31], as explained in Deagen et al. Figure 5 demonstrates how it can
be used to generate custom, dynamic visualizations of data using many different
appraoches.

(a) The Les Miserables dataset. (b) Jean Valjean.

Fig. 4: Views for entities in knowledge graphs are fairly flexible, but also exten-
sible.

2.5 Enabling Knowledge Inference

Knowledge Inference in Whyis is performed by a suite of inference agents, each
performing the analogue to a single rule in traditional deductive inferencing.
Inference agents support a much broader means of creating inference “rules” than
simple if-then entailments. Inference agents identify entities of interest using a
SPARQL query (effectively the antecedent) and a python function that generates
new RDF as the consequent. Agent developers create these queries and functions
as a way to expand the capabilities of their knowledge graphs, and use integration
at the knowledge modeling level to provide knowledge processing workflows.
The agent framework provides custom inference capability, and is composed of
a SPARQL query that serves as the “rule” “body” and a python function that
serves has the “head”, which generates additional RDF. The agent is invoked
when new nanopublications are added to the knowledge graph that match the
SPARQL query defined by the agent. Developers can choose to run this query
either on just the single nanopublication that has been added, or on the entire
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(a) Visualizing appearances of characters
in Les Miserables over time. Data curated
into the knowledge graph can easily be re-
analyzed for multiple purposes.

(b) Creating a visualization using Data
Voyager in Whyis. By supplying an ini-
tial query, users can then compose many
Vega Lite visualizations using an embed-
ded Data Voyager [36] instance.

Fig. 5: Visualizing the Les Miserables knowledge graph using Vega Lite and Data
Voyager.

graph. Whole-graph queries will need to exclude query matches that would cause
the agent to be invoked over and over. This can take some consideration for
complex cases, but excluding similar knowledge to the expected output or nodes
that have already had the agent run on them will often suffice. The Python
function “head” is invoked on each query match, and generates new RDF for to
be added to the knowledge graph as a new nanopublication. The agent superclass
will assign some basic provenance and publication information related to the
given inference activity, but developers can expand on this by overriding the
explain() function.

These inference agents are run using the Celery distributed task queueing
system. As knowledge is added to the graph on a per-nanopublication basis, an
update function in the task queue is called to invoke the agent body query, and
any matches are added to the queue. As each agent processes the relevant in-
stances, they create new nanopublications, which are also published. The update
function is in turn called on these, and the process continues until there are no
more matches.

Prebuilt inference agent types include some NLP support, including entity
detection using noun phrase extraction, basic entity resolution against other
knowledge graph nodes, and Inverse Document Frequency computation for re-
solved nodes. It also includes agents for knowledge curation (processing SETL
scripts and SDD files), an email notifier, a nanopublication versioning archive,
and an ontology import closure loader. Because of the forward-chaining nature
of the inference agent system, Whyis also provides support for custom deductive
rules using the autonomic.Deductor class. Developers can write rules by pro-
viding a construct clause as the head and a where clause as the body. Further,
Whyis also provides customized Deductor instances that are collected up into
OWL and RDFS partial profiles for RDFS, OWL 2 EL, RL, and QL. OWL 2
property chain support is still in-progress.
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An example inference agent is provided in the documentation.12 The example
shows a very simple example of how an external Python library, BeautifulSoup,
can be used to extract the text from a node that has HTML associated with it.
The agent mostly consists of a SPARQL query that looks for entities that have
have sioc:content. The Python function then extracts that content as HTML
from an RDFlib Resource in the “i” variable, parses it using BeautifulSoup,
and adds a new schema:text statement to the entity as a Resource in a new
graph (as “o”). While very simple, this agent is key to other downstream agents
that can extract named entites from the text. Similar agents can be written
to extract text from PDFs, Word Documents, or other custom data. If they
use the same schema:text predicate, existing downstream agents will see those
statements the same way as the HTML2Text agent, streamlining knowledge
processing pipelines. Many other examples are available in the Whyis source
code.13

3 Related Work

We see the following frameworks as providing some, but not all, aspects of knowl-
edge graphs as we define them:

Stardog According to their current marketing literature, Stardog14 includes
OWL reasoning, mapping of data silos into RDF, and custom rules.

Ontowiki provides a user interface on top of a RDF database that tracks his-
tory, allows users to browse and edit knowledge, and supports user interface
extensions [2].

Callimachus calls itself a “Semantic Content Manager” and lets developers
provide custom templates by object type using RDFa, and supports version-
ing of the knowledge graph [3].

Virtuoso Openlink Data Spaces is a linked data publishing tool for Open-
link Virtuoso. It provides a set of pre-defined data import tools and a fixed
set of views on the linked data it creates.15

Vitro is part of the Vivo project [5]. It is “a general-purpose web-based ontol-
ogy and instance editor with customizable public browsing.”16 It supports
the creation of new ontology classes and instances that are driven by the
ontology, to view, browse, and search those instances, but does not allow
users to create custom interfaces.

iTelos (in preprint [9]) is a knowledge graph development methodology for
which no software framework has been provided. It provides a method for
separating schema development of knowledge graphs (Entity Type Graphs,
or ETGs) from entity development (Entity Graphs, or EGs). Some tools are

12 https://whyis.readthedocs.io/en/latest/inference.html
13 https://github.com/tetherless-world/whyis/tree/main/whyis/autonomic
14 A case study: https://www.stardog.com/blog/nasas-knowledge-graph/
15 Documentation: https://ods.openlinksw.com/wiki/ODS
16 Available: https://github.com/vivo-project/Vitro
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have been developed for creation of ETGs, and nothing seems to be offered
for EGs.

Semantic MediaWiki [14] is an extension to MediaWiki that allows editors
to annotate wiki articles with RDF triples relative to the entity represented
by the current article. Semantic MediaWiki was one of the first attempts at
providing semantics to the Wikipedia project. It is limited to what could
be expressed in the wiki page format extension, does not provide custom
user interfaces, although it does offer the ability to push annotations to a
SPARQL database, some of which offer reasoning.

Wikibase [37] is the technology platform for Wikidata. It provides a user inter-
face for editing a knowledge graph as well as APIs for large scale knowledge
import. Wikibase supports the introduction of provenance through reifica-
tion using RDF* [12], but it does not allow for extensible inference nor does
it allow for type-oriented custom user interfaces.

None of these tools support general-purpose inference beyond Datalog-like
rules (Stardog), and only Stardog provides a general purpose method for im-
porting data. Stardog does provide truth maintenance within the scope of its
reasoning methods, and Ontowiki and Callimachus provide version histories, but
do not provide reasoning. None of these tools allow for arbitrary knowledge infer-
ence extensions, NLP or otherwise, and only Callimachus and Ontowiki provide
extensible user interfaces.

4 Case Studies and Evaluation

We present three case studies from our projects with Whyis for the use of it
as a knowledge graph development framework. While these are all published
examples, Whyis has been used many times for knowledge graph development on
a smaller scale for prototyping, knowledge explorations, or for proofs of concept.
We also note that because the underlying database is Fuseki, the performance
of Fuseki through Whyis is comparable to using Fuseki directly when using the
SPARQL endpoint.

4.1 MaterialsMine: a materials science knowledge graph

The MaterialsMine knowledge graph was initially introduced as NanoMine, a
knowledge graph for curating experimental results from nanocomposite materi-
als [22]. MaterialsMine is a collaboration between RPI, Duke University, Califor-
nia Institute of Technology, Northwestern University, and Univesity of Vermont.
Whyis is being used by materials scientists at all of these institutions to pub-
lish curated experimental and simulation data as an integrated materials science
knowledge graph. Part of the Materials Genome Initiative (MGI) [35], Mate-
rialsMine has expanded into providing data uploads for any materials science
data using the Dataset Catalog (DCAT) [18], visualization of materials science
knowledge [7], and curation of metamaterial computational experiment results
into the knowledge graph.
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MaterialsMine uses SETLr [20] to convert the detailed XML files originally
supported by Nanomine into RDF nanopublications. Tabular data, mostly gen-
erated by the metamaterials community, is described using SDDs [27], which
are annotated to DCAT dataset files using dcterms:conformsTo. The SDDAgent
is then keyed to notice these links and process those files into the knowledge
graph. Currently, MaterialsMine supports the processing of static properties of
metamaterials through SDDs.

Users of MaterialsMine can explore the merged results using a gallery of vi-
sualizations (see Figure 6), which are produced using a combination of SPARQL
queries against the knowledge graph and a Vega Lite grammar of graphics spec-
ification [31]. This approach was discussed in Deagen et al. [7], and produced
over 150 visualizations of the knowledge graph.

Fig. 6: A current view of the MaterialsMine visualization gallery, available at
https://materialsmine.org/wi/gallery.

4.2 Dynamic Spectrum Access Policy Framework

Normally, radio spectrum allocation is performed manually by humans over the
course of months . Dynamic Spectrum Access (DSA) promises to accellerate
that alloaction to allow for allocation of spectrum use on-demand within hours
or minutes of request. The DSA Policy Framework project [30] encoded a num-
ber of radio spectrum policies as OWL Ontology fragments for fast, automated
validation of radio frequency allocation requests. The Whyis knowledge graph
was used to manage the domain ontology that described types of equipment
used, geographic regions managed, and the backing ontologies, as well as the
actual policies expressed as OWL constraints. The DSA Policy Framework was
deployed as a docker application with Whyis embedded in the deliverable to
manage policies and supporting terminology.
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4.3 Semantic Breast Cancer Restaging

The American Joint Committee on Cancer (AJCC) periodically updates its cri-
teria for severity of different cancers into stages. In 2018, the AJCC release its
first breast cancer staging guidelines, the 8th edition [13], based on biological and
molecular markers (biomarkers), which dramatically improved the accuracy of
breast cancer staging, but also complicated its assessment. Seneviratne et al. [32]
were able to use OWL ontology-based rules for cancer staging of the 7th and 8th
editions and were able to automatically recompute cancer stages for a number of
example breast cancer cases. The project used the Whyis reasoning framework
to classify cases into relevant cancer stages in both guidelines, and was also able
to explain through recorded provenance traces how it had performed that clas-
sification. The Whyis view system was also used to produce user interfaces for
the project, as shown in Figure 7 (previously published in [32]), including the
ability to show inference agent explanations to users.

Fig. 4. AJCC 7th Edition Staging Char-
acterization

Fig. 5. AJCC 8th Edition Staging Charac-
terization

is selected, the view dynamically loads newly derived knowledge using asyn-
chronous JavaScript SPARQL POST requests. The derived knowledge includes
the inferred stage, whether this is an up-stage/down-stage/no-change, and the
explanations behind the inferred stage. Based on the inferred stage for the guide-
line selected, the corresponding treatment and monitoring options available in
our integrated cancer knowledge graph (i.e. CIViC drug nanopublication records)
are also queried and presented to the user.

A screenshot of a patient’s report as per the older 7th edition is shown in Fig.
4, and the same patient’s report according to the newer 8th edition is shown in
Fig. 5. Note the di↵erences in the inferred stage–the patient is down-staged from
IIIA in the 7th edition to IIB in the 8th edition. There are also some changes to
the treatment and monitoring options based on this new inferred stage.

7 Evaluation

We used our cancer staging ontologies and the inference agent on 250 randomly
selected SEER patient records to estimate prevalence of stage changes between
di↵erent staging guidelines. We anticipated a number of changes given that the
latest AJCC 8th edition utilizes additional biomarkers to determine stage. These
SEER patient records were first transformed into nanopublications using the
SDD process [25] as explained in Section 4, after which our inference agent was
applied to determine the stage as per the two guidelines.

The aggregated view of these stage transitions from the AJCC 7th to the
8th edition is shown in Fig. 6. As can be seen in the figure, a majority of the
patients’ stage did not change, but a statistically significant percentage of pa-
tients were either up-staged or down-staged. For example, out of the patients
who were assigned to have stage IIB cancer according to the 7th edition (19%
of the population), 15% were down-staged to IB, 30% were reclassified to IIA,
38% remained in stage IIB, and 13% and 5% were up-staged to IIIA and IIIB
respectively.

11

Fig. 7: (a) AJCC 7th Edition Staging Characterization. (b) AJCC 8th Edition
Staging Characterization (previously published in [32]).

5 Discussion

Managing knowledge graphs at nano-scale within the Whyis semantic ecosystem
has made it simple to realize core knowledge graph requirements for knowledge
curation, integration and exploration. Knowledge curation from diverse sources
can occur with detailed provenance of where everything comes from and what
knowledge is contingent on other knowledge, using existing provenance stan-
dards. User interfaces can query knowledge provenance to provide deep expla-
nations of what they show. Inference agents become more scalable when much
of the analysis can be performed on knowledge fragments, rather than the en-
tire knowledge graph. Whyis, through SETLr, supports the transformation of
databases into rigorously modeled knowledge, regardless of the source format.
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The inherent use of provenance standards opens up the ability to capture
contingent knowledge that may or may not be consistent. Questions of “Who
or what made this claim?”, “What other knowledge have they added?”, “Do
we trust them?” can be asked by knowledge graph developers so that users
can decide what knowledge they want to trust. We also have the option to
provide services that look for evidence for a statement as well as evidence for
the negation of a statement. For knowledge inference, the use of update-based
general inference provides an inherent forward-chaining paradigm – when an
agent adds new knowledge, the other agents are checked to see if they can provide
new conclusions from that output. Further, the use of a distributed task queuing
system (Celery) for implementation means that, while the inference engine may
not be as fast as an in-database reasoner, it is potentially more scalable, because
additional compute nodes can be added to serve as Celery workers. The central
database is only responsible for recording changes and answering queries, which
means that it can serve whatever knowledge has been computed so far, rather
than waiting for a complete answer to be returned.

We see Whyis as a potential unifying testbed and integration point for algo-
rithms and methods used in working with knowledge graphs. For example, NLP
algorithms that purport to generate knowledge graphs and deductive or infer-
ence algorithms that expand knowledge graphs, graph learning algorithms that
can infer new links between entities. This work has the potential to encourage
algorithm developers to work on common knowledge representations, which will
make comparisons easier across algorithms. A unified approach could make it
easier to put new algorithms into practice by providing a context in which those
algorithms can operate, including a common representation for existing entities
in the knowledge graph and pre-loaded knowledge, and for algorithms to build
off of each others’ output. The challenge here is to provide a guide for NLP and
other algorithm developers to map their output into a useful knowledge graph
representation.

5.1 Limitations

There are a number of limitations to consider when evaluating Whyis for imple-
mentation. The inference engine is not as fast as in-database reasoners because
it needs to query the database remotely, parse, and then serialize new knowl-
edge back into the database. Currently, inference agents must be written in
Python or have a Python wrapper around an external script or service. Also,
the process of revising knowledge in larget imports can be slowed if there are
many pre-existing revisions to retire. The commitment to using nanopublica-
tions as a transactional atom has also complicated our adoption of standards
like the Linked Data Platform (LDP) [16]. LDP itself makes assumptions about
the best way to manage knowledge graph fragments that are incompatible with
arbitrarily-scoped nanopublications. Whyis does support LDP POST, DELETE,
and PUT for nanopublication edits, but not for entities.
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5.2 Future Work

Work and research on Whyis is active and ongoing; we have a number of im-
provements and research projects planned. While the immediate future of Whyis
is secured by a number of research grants, we will be looking to plan out the
long term sustainability of Whyis. Additionally, with the release of Whyis 2.0, we
plan to expand usage by others, we will be providing tutorials at academic con-
ferences and online video tutorials on using Whyis to create knowledge graphs.
While most KGApp development has been driven by projects the authors were
driving, we feel that Whyis is ready for use by a broader audience of knowledge
graph developers.

We plan to perform a benchmark of the inference agent framework to com-
pare both the capabilities and performance against other inference systems. We
also plan to include support for the RDF Mapping Language (RML), a more
familiar method of knowledge curation for the Semantic Web community than
SETLr and SDDs. We are also going to research new methods for display in
the knowledge explorer user interface, including custom renderings and layout
using the Cytoscape.js [8], and to support the original use case developed in
[21]. We are working on a suite of integrated inference agents. Inductive agents
will utilize statistics and machine learning algorithms to automatically infer new
knowledge and relationships in the knowledge graph. For example, we plan to
investigate graph learning algorithms like [17] that can learn from the structure
of published knowledge graphs to find new relations. Finally, with the increased
uptake of ActivityPub-based standards in the “Fediverse” [15], we hope to ex-
plore the role of knowledge graphs and conversational agents in social networks
by augmenting our commentary system to conform to the ActivityPub stan-
dard. This will allow Whyis knowledge graphs to serve as Fediverse nodes, and
for Whyis computational agents to interact with humans through a medium they
are already familiar with.

6 Conclusions

We introduce Whyis as the first provenance-aware open source framework for
knowledge graph development that fulfills key user stories in knowledge graph
curation, interaction, and inference within a unified ecosystem. We discussed
the importance of nanopublications in the architecture of Whyis, and why it is
valuable to develop nano-scale knowledge graphs that are built on nanopublica-
tions. The architecture of Whyis was designed to support use cases in three key
areas of knowledge graph development: curation, inference, and interaction. As
a result we were able to show how Whyis has been used in materials science, ra-
dio spectrum policy, and breast cancer restaging to produce valuable knowledge
resources to those communities. Finally, we discussed the potential for Whyis
to be a testbed of algorithms for curation of, interaction with, and inference
from knowledge graphs, including algorithms that automatically build knowl-
edge graphs using NLP, probabililistic network analysis, and machine learning
methods for graph learning and statistical inference.
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