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Abstract. Many applications require explainable node classification in
knowledge graphs. Towards this end, a popular “white-box” approach
is class expression learning: Given sets of positive and negative nodes,
class expressions in description logics are learned that separate posi-
tive from negative nodes. Most existing approaches are search-based
approaches generating many candidate class expressions and selecting
the best one. However, they often take a long time to find suitable
class expressions. In this paper, we cast class expression learning as
a translation problem and propose a new family of class expression
learning approaches which we dub neural class expression synthesizers.
Training examples are “translated” into class expressions in a fashion
akin to machine translation. Consequently, our synthesizers are not sub-
ject to the runtime limitations of search-based approaches. We study
three instances of this novel family of approaches based on LSTMs,
GRUs, and set transformers, respectively. An evaluation of our approach
on four benchmark datasets suggests that it can effectively synthesize
high-quality class expressions with respect to the input examples in
approximately one second on average. Moreover, a comparison to state-
of-the-art approaches suggests that we achieve better F-measures on
large datasets. For reproducibility purposes, we provide our implemen-
tation as well as pretrained models in our public GitHub repository at
https://github.com/dice-group/NeuralClassExpressionSynthesis

Keywords: Neural network - Concept learning - Class expression learn-
ing - Learning from examples.

1 Introduction

One of the most popular families of web-scale knowledge bases [16] is that of RDF
knowledge bases equipped with an ontology in W3C’s web ontology language
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OWL [28]. Examples include DBpedia [3], Wikidata [40], and CaliGraph [17]. One
means to implement ante-hoc explainable machine learning on these knowledge
bases is class expression learning (also called concept learning) [13, 15, 24, 26, 34,
39]. Informally, class expression learning approaches learn a class expression that
describes individuals provided as positive examples. Class expression learning
has applications in several domains, including ontology engineering [25], bio-
medicine [27] and Industry 4.0 [2]. There exist three main learning settings in
class expression learning: (1) positive and negative learning, (2) positive-only
learning, and (3) class-inclusion learning [23]. This paper tackles setting (1).

Several methods have been proposed to solve class expression learning prob-
lems; the best are based on refinement operators [13, 20, 23, 24, 26, 34] and
evolutionary algorithms [15]. A common drawback of these approaches is their
lack of scalability. While the reasoning complexity of all learning approaches
grows with the expressivity of the underlying description logic (DL) [19, 32],
those based on refinement operators and evolutionary algorithms further suffer
from the exploration of an infinite conceptual space for each learning problem [34].
Another inherent limitation of existing methods for class expression learning
from examples is their inability to leverage previously solved problems—their
algorithm always starts from scratch for each new learning problem.

In view of the large sizes of modern knowledge bases, e.g., DBpedia [3] and
Wikidata [40], we propose a new family of approaches, dubbed neural class
expression synthesizers (NCES), for web-scale applications of class expression
learning. The fundamental hypothesis behind this family of algorithms is that
one should be able to capture enough semantics from latent representations (e.g.,
embeddings) of examples to directly synthesize class expressions in a fashion
akin to machine translation, i.e., without the need for costly exploration. This
hypothesis is supported by the significant improvement in the performance of
machine translation approaches brought about by neural machine translation
(NMT) [7, 44]. NMT approaches translate from a source language to a target
language by exploiting an intermediary representation of a text’s semantics. NCES
behave similarly but translate from the “language” of sets of positive/negative
examples to the “language” of class expressions. We instantiate this new paradigm
by implementing three NCES instances that target the description logic ALC.
We show that our NCES instances generate high-quality class expressions with
respect to the given sets of examples while remaining scalable. In fact, NCES
instances synthesize solutions for multiple learning problems at the same time as
they accept batches of inputs. This makes NCES particularly fit for deployment
in large-scale applications of class expression learning, e.g., on the web.

The rest of the paper is organized as follows: First, we present existing
approaches for class expression learning and introduce the notations and prerequi-
sites needed throughout the paper. Next, we describe the intuition behind NCES
in detail and introduce three instantiations of this new family of algorithms.
We then compare these instantiations with state-of-the-art approaches on four
benchmark datasets. Finally, we discuss our results and draw conclusions from
our experiments.
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2 Related Work

Class expression learning has been of interest to many researchers in recent
years. Of the proposed approaches, the most prominent include those based on
evolutionary algorithms [15] and refinement operators [6, 13, 20, 24, 25, 36]. The
state-of-the-art EvoLearner [15] initializes its population by random walks on the
knowledge graph which are subsequently converted to description logic concepts,
represented as abstract syntax trees. These concepts are further refined by means
of mutation and crossover operations. EvoLearner outperformed approaches
based on refinement operators such as CELOE and OCEL from the DL-Learner
framework [15]. Previously, Lehmann and Hitzler [26] studied different properties
that a refinement operator can have, then designed a refinement operator to learn
class expressions in description logics. Their learning algorithm, CELOE [25], is
implemented in DL-Learner [23] alongside OCEL and ELTL [6]. CELOE extends
upon OCEL by using a different heuristic function and is currently regarded
as the best class expression learning algorithm in DL-Learner. Although ELTL
was designed for the lightweight description logic ££, we include it in this study
to check whether our generated learning problems can be solved in a simpler
description logic. ECII [36] is a recent approach for class expression learning
that does not use a refinement operator and only invokes a reasoner once for
each run. This approach was designed to overcome the runtime limitations of
refinement operator-based approaches. Other attempts to prune the search space
of refinement operator-based approaches include DL-FocL [34]. It is a modified
version of DL-FoIL [13] that is quintessentially based on omission rates. DL-
FocL uses techniques such as lookahead strategy and local memory to avoid
reconsidering sub-optimal choices.

Even though existing approaches for class expression learning have shown
promising results, most of them are search-based. As a result, these approaches
often use entailment checks—which are hard to compute, see Ozaki [32]—or
compute classification accuracies at each step of the search process. In contrast,
NCES only require a refinement operator for generating training data but not at
prediction time. Hence, NCES are particularly suitable for solving many different
learning problems consisting of positive and negative examples on the same
dataset. As the training process of our synthesizers only involves instance data
embeddings and a vocabulary of atoms, they can be extended to more expressive
description logics such as ALCHZQ(D).

3 Background

3.1 Notation

DL is short for description logic, and DNN stands for deep neural network.
Unless otherwise specified, X = (TBoz, ABoz) is a knowledge base in ALC,
and N7 is the set of all individuals in K. The ABoz consists of statements of
the form C(a) and R(a,b), whereas the TBoz contains statements of the form
C C D, where C, D are concepts, R is a role, and a, b are individuals in K. We
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use the representation of OWL knowledge bases as sets of triples to compute
embeddings of individuals, classes and roles. The conversion into triples is carried
out using standard libraries such as RDFLib [21]. We then use the knowledge
graph representation of the knowledge bases to compute embeddings, which are
essential to our proposed approach (see Figure 1). The function |.| returns the
cardinality of a set. 1 denotes the indicator function, i.e., a function that takes
two inputs and returns 1 if they are equal, and 0 otherwise. Let a matrix M
and integers 7, j be given. M. ;, M, ., and M;; represent the j-th column, the
i-th row, and the entry at the i-th row and j-th column, respectively. Similar
notations are used for higher-dimensional tensors.

We define the vocabulary Vocab of a given knowledge base KC to be the list of
all atomic concepts and roles in K, together with the following constructs in any
fixed ordering: “” (white space), “.” (dot), “LU”, “r”, “37 “y’, “=7 “(” and
“)?, which are all referred to as atoms. Vocabl[i] is the atom at position ¢ in Vocab.
These constructs are used by NCES to synthesize class expressions in ALC (see
Section 4 for details). Let C' be a class expression, then C' and C are the list (in
the order they appear in C') and set of atoms in C, respectively.

3.2 Description Logics

Description logics [30] are a family of knowledge representation paradigms based
on first-order logics. They have applications in several domains, including artificial
intelligence, the semantic web, and biomedical informatics. In fact, the web
ontology language, OWL, uses description logics to represent the terminological
box of RDF ontologies. In this work, we focus on the description logic ALC
(Attributive Language with Complement) [37] because of its simplicity and
expressiveness. The syntax and semantics of ALC are presented in Table 1.

Table 1. ALC syntax and semantics. Z is an interpretation and A% its domain.

Construct Syntax Semantics

Atomic concept A AT C AT

Atomic role R RT C AT x AT

Top concept T AT

Bottom concept 1L 0

Conjunction cnbD ctnbDt

Disjunction cubD ctuDp?

Negation -C AT\ T

Existential role restriction 3RC {a® € AT/ bT € CF, (a®,b") € RT}

Universal role restriction vV R.C {a® € ATV bT, (a*,b7) € RT = bF € C7F}




Neural Class Expression Synthesis 5

3.3 Refinement Operators

Definition 1 ([26]). Given a quasi-ordered space (S, =), a downward (respec-
tively upward) refinement operator on S is a mapping p: S — 25 such that for
allC €S, C' € p(C) implies C' = C (respectively C < C").

A refinement operator can be finite, proper, redundant, minimal, complete, weakly
complete or ideal. Note that some of these properties can be combined whilst
others cannot [26]. For class expression learning in description logics, weakly
complete, finite, and proper refinement operators are the most used.

3.4 Class Expression Learning

Definition 2. Given a knowledge base K, a target concept T, a set of posi-
tive examples E+ = {ef,e;,...,e;‘;l}, and a set of megative examples E~ =
{er.eq,... e,,}, the learning problem is to find a class expression C such that
for K' = KU{T = C}, we have ¥V et € E* Ve~ € E~, K' = C(e") and
K'ECe) .

Most existing approaches use hard-coded heuristics or refinement operators to
search for the solution C'. When an exact solution does not exist, an approximate
solution in terms of accuracy or F-measure is to be returned by the approaches.
In this work, we exploit the semantics embedded in latent representations of
individuals (instance data) to directly synthesize C.

3.5 Knowledge Graph Embedding

A knowledge graph can be regarded as a collection of assertions in the form of
subject-predicate-object triples (s, p,0). Embedding functions project knowledge
graphs onto continuous vector spaces to facilitate downstream tasks such as link
prediction [5], recommender systems [47], and structured machine learning [20].
Many embedding approaches for knowledge graphs exist [9, 41]. Some of them
use only facts observed in the knowledge graph [4, 31]. Others leverage additional
available information about entities and relations, such as textual descriptions [42,
45]. Most embedding approaches initialize each entity and relation with a random
vector, matrix or tensor and learn the embeddings as an optimization problem.
For example, TransE [5] represents entities and relations as vectors in the same
space and aims to minimize the Euclidean distance between s 4+ p and o for each
triple (s, p,0). In this work, we use ConEx [10] and TransE to evaluate NCES.

3.6 Permutation-Invariant Network Architectures for Set Inputs

We deal with set-structured input data as in 3D shape recognition [33], multiple
instance learning [11], and few-shot learning [14, 38]. These tasks benefit from
machine learning models that produce the same results for any arbitrary reorder-
ing of the elements in the input set. Another desirable property of these models
is the ability to handle sets of arbitrary size.
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In recent years, several approaches have been developed to meet the afore-
mentioned requirements. The most prominent of these approaches include Deep
Set [46] and Set Transformer [22]. The Deep Set architecture encodes each el-
ement in the input set independently and uses a pooling layer, e.g., averaging,
to produce the final representation of the set. In contrast, the Set Transformer
architecture uses a self-attention mechanism to represent the set, which allows
pair-wise and even higher-order interactions between the elements of the input
set. As a result, the Set Transformer architecture shows superior performance
on most tasks compared to Deep Set with a comparable model size [22]. In this
work, we hence use the Set Transformer architecture (more details in Section 4)
and refer to [22] for a description of its building blocks: Multi-head Attention
Block (MAB), Set Attention Block (SAB), Induced Set Attention Block (ISAB),
and Pooling by Multi-head Attention (PMA).

4 Neural Class Expression Synthesis

In this section, we present our proposed family of approaches for class expression
learning from examples. We start with a formal definition of the learning problem
that we aim to solve, then present our proposed approach in detail.

4.1 Learning Problem

We adapt the classical definition of a learning problem (see Definition 2) to our
setting of class expression synthesis (Definition 3).

Definition 3. Given a knowledge base K, a set of positive examples ET =
{el.e3,...,¢e) }, and a set of negative examples E~ = {e] ,e5,... e, }, the
learning problem is to synthesize a class expression C in ALC using atoms (classes

and roles) in K that (ideally) accurately classifies the provided examples.

In theory, there can be multiple solutions to a learning problem under both
Definition 2 and Definition 3; our NCES generate only one. Moreover, the
solution computed by a concept learner might be an approximation, e.g., there
might be some false positives and false negatives. NCES aim to obtain high values
for accuracy and F-measure.

4.2 Learning Approach (NCES)

We propose the following recipe to implement the idea behind NCES. First, given
a knowledge base over ALC, convert it into a knowledge graph (see Subsection 3.1).
Then, embed said knowledge graph into a continuous vector space using any
state-of-the-art embedding model in the literature. In our experiments, we used
two embedding models with different expressive power: ConEx which applies
convolutions on complex-valued vectors, and TransE which projects entities
and relations onto a Euclidean space and uses the Euclidean distance to model
interactions. The computed embeddings are then used as features for a model
able to take a set of embeddings as input and encode a sequence of atoms as
output (see Figure 1).
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Fig. 1. NCES architecture. DNN stands for deep neural network that produces a
sequence of tokens in the vocabulary (e.g., a sequence-to-sequence or a set-to-sequence
model). The input consists of positive examples (upper left, dotted green box) and
negative examples (bottom left, dotted red box).

Neural Network Architectures We conduct our experiments using the fol-
lowing network architectures: the Long Short-Term Memory (LSTM) [18], the
Gated Recurrent Unit (GRU) [8], and the Set Transformer [22]. The latter is
known to be permutation equivariant while the two others are not. Nonetheless,
LSTM and GRU can handle set inputs as long as an ordering is defined since
they deal well with sequential data [49, 50]. In this work, we use the default
ordering (the order in which we received the data) of the elements in each set
during the data generation process (see Section 5.1).

Recurrent Networks (LSTM and GRU) We use two recurrent layers followed by
three linear layers with the relu activation function and a batch normalization
layer. A recurrent neural network produces a sequence of n hidden states h;
(i=1,...,n) for each input sequence of length n. In this work, we are concerned
with a sequence of n; positive examples and a sequence of no negative examples
which are processed separately with the same network:

[ hb%® = RNN (2p0s); hTY, ..., hpsd = RNN (Zpeg); (1)

where 2,05 and x,¢4 are the sequences of embeddings of positive and negative
examples, respectively. RNN is a two-layer LSTM or GRU network. The hidden
state vectors of the two sets of examples are summed separately, then concatenated
and fed to a sequence of 3 linear layers:

T1 T2
hpos = 3 WE%*: hpeg i= Y %5 b= Concat(hyos, hneg): (2)
t=1 t=1

O = Ws(bn(Wa f(Wih + b1) + b2)) + bs. (3)
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Here, f is the relu activation function, bn is a batch normalization layer, and
W1, b1, Wa, ba, W3, b3 are trainable weights.

Set Transformer This architecture comprises an encoder Enc and a decoder Dec,
each with 4 attention heads. The encoder is a stack of two ISAB layers with
m = 32 inducing points, and the decoder is composed of a single PMA layer with
one seed vector (k = 1), and a linear layer. As in the previous paragraph, the sets
of positive and negative examples for a given class expression are first encoded
separately using the encoder. The outputs are then concatenated row-wise and
fed to the decoder:

Opos = Enc(2pos); Oneg = Enc(zneg); (4)
O = Dec(Concat(Opos, Oneg))- (5)

Although the encoder captures interactions intra-positive and intra-negative
examples separately, the decoder further captures interactions across the two
sets of examples from the concatenated features through self-attention. This
demonstrates the representational power of the Set Transformer model for our
set-structured inputs for class expression synthesis.

The output O from 3 and 5 is reshaped into a (14 | Vocab|) x L matrix, where
L is the length of the longest class expression that NCES instances can generate.
These scores allow us to compute the loss (see Equation 6) and update model
weights through gradient descent during training.

Loss We train our NCES instances using the loss function £ defined by:

_ SNy, O
£ ==y 3D tos | e 7 (6)

o1 €XP(Tiyc,j)

where N is the size of the minibatch, C' is the number of classes, x € RN*X¢*L ig
the minibatch of predicted class scores for each position in the target sequence
of atoms, and y € NV*Z is the minibatch of actual class indices. Minimizing £
constrains the model to assign a high score to the entry corresponding to the
correct token (exp(z;y,; ;) =~ 1) while keeping the remaining scores relatively low
(Zily#y” exp(z;¢,;) ~ 0). In this work, C' = 1+ | Vocab|, where the additional
+1 accounts for the special token “PAD” that we used to pad all class expressions
to the same length. Contrarily to some works that omit this special token when
computing the loss, we use it as an ordinary token during training. This way, we
can generate class expressions more efficiently at test time with a single forward
pass in the model, then strip off the generated tokens after the special token. To
avoid exploding gradients and accelerate convergence during training, we adopt
the gradient clipping technique [48].

Learning Metrics Apart from the loss function, we introduce two accuracy
measures to quantify how well neural networks learn during training: soft accuracy
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and hard accuracy. The former only accounts for the correct selection of the atoms
in the target expression, while the latter additionally measures the correct ordering
of the selected atoms. Formally, let T' and P be the target and predicted class
expressions, respectively. Recall the notation C' and C introduced in Section 3.1
for any class expression C. The soft (Accs) accuracy and hard accuracy (Accy)
are defined as follows:

min(ly,l2) ]I(T[Z], P[’LD

— ‘T0P|_ ACCh(T,P) — Ei:l

Accs(T, P) = \T ¥ ]5| ;

(7)

maX(ll, 12)

where [; and I are the lengths of T' and P, respectively.

Class Expression Synthesis We synthesize class expressions by mapping the
output scores O (see Equations 3 and 5) to the vocabulary. More specifically, we
select the highest-scoring atoms in the vocabulary for each position along the
sequence dimension:

id; = argmax O, for j=1,...,L, (8)
ce{l1,...,C}
synthesized_atom; = Vocablid,]. (9)

Model Ensembling Ensemble learning has proven to be one of the most robust
approaches for tasks involving complex noisy data [12, 35]. In this work, we
combine class expression synthesizers’ predictions post training by averaging the
predicted scores. Specifically, given the output scores O; € RE*F (i =1,2,3) as
defined in 3 and 5 for the three models LSTM, GRU, and Set Transformer, we
consider four different ensemble models: three pairwise ensemble models, and
one global ensemble model (LSTM, GRU, and Set Transformer are combined).
Formally, the ensemble scores are computed as:

Zz’eI O;

O:
\Z|

with Z C {1,2,3} and |Z] > 2. (10)

Then, the synthesized expression is constructed following Equations 8 and 9 using
the average scores O.

5 Evaluation

5.1 Experimental Setup

Datasets We evaluated our proposed approach on the Carcinogenesis [43], Muta-
genesis [43], Semantic Bible!, and the Vicodi [29] knowledge bases. Carcinogenesis
and Mutagenesis are knowledge bases about chemical compounds and how they
relate to each other. The Semantic Bible knowledge base describes each named

! https://wuw.semanticbible.com/ntn/ntn-overview.html
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Table 2. Detailed information about the datasets used for evaluation. |LPs| is the
number of learning problems in the test set.

Dataset |Ind.| |Classes| |Prop.| |TBox| |ABox| |Train| |LPs| [Vocab|
Carcinogenesis 22,372 142 4 144 74,223 10,982 111 157
Mutagenesis 14,145 86 5 82 47,722 5333 54 102
Semantic Bible 724 48 29 56 3,106 3,806 40 88
Vicodi 33,238 194 10 204 116,181 18,243 175 215

object or thing in the New Testament, categorized according to its class, including
God, groups of people, and locations. The Vicodi knowledge base was developed
as part of a funded project and describes European history. The statistics of each
of the knowledge bases are given in Table 2.

Training and Test Data Construction We generated class expressions of
different forms from the input knowledge base using the recent refinement opera-
tor by Kouagou et al. [20] that was developed to efficiently generate numerous
class expressions to serve as training data for concept length prediction in ALC.
The data that we generate is passed to the filtering process, which discards any
class expression C' such that an equivalent but shorter class expression D was
not discarded. Note that each class expression comes with its set of instances,
which are computed using the fast closed-world reasoner based on set operations
described in [15]. These instances are considered positive examples for the cor-
responding class expression; negative examples are the rest of the individuals
in the knowledge base. Next, the resulting data is randomly split into training
and test sets; we used the discrete uniform distribution for this purpose. To
ensure that our approach is scalable to large knowledge bases, we introduce a
hyper-parameter n = n; + no that represents the total number of positive and
negative examples we sample for each class expression to be learned by NCES.
Note that n is fixed for each knowledge base, and it depends on the total number
of individuals.

Evaluation Metrics We measure the quality of a predicted class expression in
terms of accuracy and F-measure with respect to the positive/negative examples.
Note that we cannot expect to exactly predict the target class expression in the
test data since there can be multiple equivalent class expressions.

Hyper-parameter Optimization for NCES We employed random search
on the hyper-parameter space since it often yields good results while being
computationally more efficient than grid search [1]; the selected values—those
with the best results—are reported in Table 3. In the table, it can be seen that
most knowledge bases share the same optimal values of hyper-parameters: the
minibatch size N, the number of training epochs epochs, the optimizer opt.,
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Table 3. Hyper-parameter settings per dataset. Recall that m is the number of inducing
points in the Set Transformer model, and n is the number of examples.

Dataset epochs opt. Ir d N L n m gc
Carcinogenesis 300 Adam  0.001 40 256 48 1,000 32 5
Mutagenesis 300 Adam  0.001 40 256 48 1,000 32 5
Semantic Bible 300 Adam  0.001 40 256 48 362 32 5
Vicodi 300 Adam  0.001 40 256 48 1,000 32 5

Table 4. Model size and training time. The training time is in minutes.

Carcinogenesis Mutagenesis Semantic Bible Vicodi

|Params.| Time |Params.| Time |Params.| Time |Params.| Time

NCESrsran 1,247,136 31.50 906,576 16.94 819,888  6.65 1,606,272 50.82
NCESgry 1,192,352 21.61 851,792 12.28 765,104  5.39 1,551,488 34.15
NCESsr 1,283,104 40.82 942,544 21.36 855,856  7.98 1,642,240 66.19

the learning rate Ir, the maximum output sequence length L, the number of
embedding dimensions d, the number of inducing points m, and the gradient
clipping value gec. Although we may increase n for very large knowledge bases,
n = min( |/\2/1 | ,1000) appears to work well with our evaluation datasets. This
suggests that one can effortlessly find fitting hyper-parameters for new datasets.

Hardware and Training Time We trained our chosen NCES instances on a
server with 1TB of RAM and an NVIDIA RTX A5000 GPU with 24 GB of RAM.
Note that during training, approximately 8 GB of the 1TB RAM is currently used
by NCES. As search-based approaches do not require a GPU for class expression
learning, we used a 16-core Intel Xeon E5-2695 with 2.30GHz and 16GB RAM to
run all approaches (including NCES post training) for class expression learning
on the test set. The number of parameters and training time of each NCES
instance are reported in Table 4. From the table, we can observe that NCES
instances are lightweight and can be trained within a few hours on medium-size
knowledge bases. Note that training is only required once per knowledge base.

5.2 Results

Syntactic Accuracy Our neural class expression synthesizers were trained for
300 epochs on each knowledge base. In Figure 2, we only show the hard accuracy
curves during training due to space constraints. The rest of the training curves
can be found on our GitHub repository. The curves in Figure 2 suggest that
NCES instances train fast with an exponential growth in accuracy within the first
10 epochs. All models achieve over 95% syntactic accuracy on large knowledge
bases (Carcinogenesis, Mutagenesis, and Vicodi). On the smallest knowledge base,
Semantic Bible, we observe that NCES g1 drops in performance as it only achieves
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88% accuracy during training. On the other side, NCESgry and NCES 57,
tend to overfit the training data. This suggests that NCES instances are well
suited for large datasets. We validate this hypothesis through the quality of the
synthesized solutions on the test set (see Table 5).
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Fig. 2. Training accuracy curves.

Comparison to State-of-the-art Approaches We compare our approach
against EvoLearner, CELOE, ECII, ELTL. The maximum execution time for
CELOE and EvoLearner was set to 300 seconds per learning problem while
ECII and ELTL were executed with their default settings, as they do not have
the maximum execution time parameter in their original implementation. From
Table 5, we can observe that our approach (with ensemble prediction) significantly
outperforms all other approaches in runtime on all datasets, and in F-measure
on Carcinogenesis and Vicodi. Table 6 shows that NCES performs slightly better
with ConEx embeddings than TransE embeddings except on the Carcinogenesis
dataset. The standard deviation of NCES’s prediction time is 0 because it performs
batch predictions, i.e., it predicts solutions for all learning problems at the same
time. The prediction time is averaged across learning problems and is therefore
the same for each learning problem. We used the Wilcoxon Rank Sum test with
a significance level of 5% and the null hypothesis that the compared quantities
per dataset are from the same distribution. The best search-based approaches
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Table 5. Evaluation results per approach and dataset. NCES uses ConEx embeddings.
The star (*) indicates statistically significant differences between the best search-based
and the best synthesis-based approaches. 1 indicates that the higher is better, and |
indicates that the lower is better. Underlined values are the second best.

F, (%) 1
Carcinogenesis Mutagenesis Semantic Bible Vicodi
CELOE 37.92+44.25 82.95+33.48 93.18+17.52* 35.66+42.06
ELTL 13.354+25.84 28.81+34.44 42.77+38.46  16.704+33.31
ECII 15.74£27.82  27.14+31.64 33.97+£37.71  43.66+36.13
EvoLearner 91.48+14.30 93.27+12.95 91.884+10.14  92.74+10.28
NCESLsTMm 82.21+£29.29  81.47427.77 72.324+34.37  72.35+35.34
NCES¢ru 89.51£25.24  78.244+30.99 52.37+39.86  86.601+26.84
NCESsT 90.32£25.12  80.55+34.33 72.95+38.68  77.751+37.16
NCESst+crU 96.77+£12.72  89.504+26.09 84.324+26.82  92.91+20.14
NCESst+LsTM 96.72+£12.96  89.194+26.16  80.78+28.30  90.91+£21.57
NCESGRU+LsTM 94.51£15.39  81.49£30.71 75.914+32.48  88.284+24.17
NCESsr+cru+LsTm 97.06+£13.06* 91.39422.91 87.114+24.05 95.51+12.14*

Accuracy (%) 1

Carcinogenesis Mutagenesis Semantic Bible Vicodi
CELOE 66.88+£24.87 94.39£11.68 98.17+ 4.95 85.38+17.71
ELTL 24.96+£32.86 38.01£39.26 47.31+38.22  33.35+41.88
ECII 25.95£35.98 31.99£38.36  30.35+37.91  76.731+35.22
EvoLearner 99.72+ 1.44 99.35+2.03 98.89+3.45% 99.27+5.13
NCESLsTMm 97.92£11.19 98.04+ 6.81 89.83+23.59  94.03+20.77
NCES¢ru 99.32+ 4.16 98.02+ 4.03 80.67+30.80 98.10+11.43
NCESst 97.16£14.33 90.71£25.49 84.194+32.72  89.90+27.89
NCESst+crU 99.03£ 9.28 97.27£11.75 92.38421.39  97.11£12.57
NCESst+LsTMm 99.26+ 5.69 96.93+12.17 90.27+21.60 95.78+16.46
NCESGru+LsTM 99.90+0.31 98.49+ 5.35 87.16£27.44  96.86+14.99
NCESsr+cru+LsTam  99.04£ 9.28 98.39+ 6.45 94.70+17.83  97.48+11.71
Runtime (sec.) |
Carcinogenesis Mutagenesis Semantic Bible Vicodi
CELOE 239.58+132.59 92.46+£125.69 135.30+£139.95 289.95+103.63
ELTL 23.81£1.47  15.19£12.50  4.1240.11  299.144-202.21
ECII 22.93+£2.63 18.114+4.93 6.45+1.42 37.94+28.25
EvoLearner 54.73£25.86 48.00£31.38  17.16£9.20  213.78+81.03
NCESLsTMm 0.16+0.00 0.19£0.00 0.08+0.00 0.13£0.00
NCES¢ru 0.15+0.00 0.18+0.00 0.08+0.00 0.06£0.00
NCESst 0.08+0.00* 0.11+0.00* 0.07+£0.00* 0.04+0.00*
NCESst+crU 0.16+0.00 0.25+0.00 0.11£0.00 0.09£0.00
NCESst+LsTMm 0.2340.00 0.2340.00 0.11£0.00 0.11£0.00
NCESGru+LsTM 0.24+£0.00 0.32£0.00 0.13£0.00 0.17£0.00
NCESsr+cru+rLsTtm  0.27£0.00 0.31£0.00 0.15+0.00 0.15£0.00
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Table 6. Evaluation results using TransE embeddings.
F, (%) 1

Carcinogenesis Mutagenesis Semantic Bible  Vicodi
NCESLsTm 84.52427.01 76.454+34.22 59.63+34.98 79.06+£30.07
NCEScru 87.00+27.43 77.77+36.36 65.71+33.51 79.81+33.31
NCESst 86.661+30.13 79.12+34.23 68.14+37.17 78.331+36.35
NCESsT+GRrU 97.47+ 9.63 91.054+21.11 75.36+£32.88 89.27+25.09
NCESsT+LsTM 92.85+21.88 90.01+19.50 76.26+34.07 89.371+24.46
NCESGruU+LsTM 91.83+21.03 81.224+33.05 76.17+£31.53 87.681+24.54
NCESsr+cru+rLsTm  97.56£11.55 91.24421.27 85.82+24.85 90.05£23.67

Accuracy (%) 1

Carcinogenesis Mutagenesis Semantic Bible  Vicodi
NCESLsTMm 97.40+14.19 96.594+11.27 84.10+24.91 97.17+£11.98
NCESgru 97.684+12.82 95.20+15.08 82.85+£29.44 95.86+16.27
NCESsr 93.594+23.06 93.114+21.15 82.47+33.34 91.704+25.01
NCESsr+crU 99.35+ 5.52 99.07+ 2.61 85.62+27.76 96.45+15.17
NCESsT+LsTM 98.114+11.18 99.00+ 2.69 88.95+23.69 95.05+18.01
NCESGru+LsTM 98.91+ 9.46 96.084+13.64 89.25+24.54 97.37+12.60
NCESsr+cru+LsTm  98.99+ 9.45 98.904+ 4.70 93.53+18.24 95.014+18.53

Runtime (sec.) |

Carcinogenesis Mutagenesis Semantic Bible  Vicodi
NCESLsTm 0.0940.00 0.1440.00 0.06£0.00 0.12+0.00
NCES¢ru 0.0540.00 0.15+0.00 0.06+0.00 0.134+0.00
NCESsr 0.0440.00 0.09+0.00 0.05+0.00 0.05+0.00
NCESsr+aru 0.08+0.00 0.1840.00 0.08+0.00 0.11£0.00
NCESsT+LsTM 0.09£0.00 0.16+0.00 0.084+0.00 0.11£0.00
NCESGRU+LSTM 0.1540.00 0.2240.00 0.10£0.00 0.15+0.00
NCESsr+aru+rLsTm  0.1440.00 0.2240.00 0.11£0.00 0.14+0.00

(CELOE and EvoLearner) only outperform NCES instances (including ensemble
models) on the smallest datasets (Semantic Bible and Mutagenesis). The reason
for this is that deep learning models are data-hungry and often fail to generalize
well on small datasets. Our approach is hence well suited for large knowledge
bases where search-based approaches are prohibitively slow.

5.3 Discussion

The hypothesis behind this work was that high-quality class expressions can be
synthesized directly out of training data, i.e., without the need for an extensive
search. Our results clearly undergird our hypothesis. While NCES is outperformed
by CELOE and EvoLearner on small datasets, it achieves the best performance
on Carcinogenesis with over 5% absolute improvement in F-measure. This large
difference is due to the fact that most search-based approaches fail to find any
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suitable solution for some learning problems. For example, the first learning
problem on the Vicodi knowledge base is (Disaster LI Military-Organisation)
M (—Engineer). The solutions computed by each of the approaches are as follows:
CELOE: Flavour M (—Battle) M (—Person) [Fi: 1.95%)], ELTL: Flavour N
(3 related. (3 related.Role)) [F1: 0%], ECII: Organisation LJ —VicodiOI
[F1: 13.16%)], EvoLearner: Military-Organisation M Military-Organisation
[Fi: 73.17%], and NCESgr+cry?: (Disaster L Military-Organisation) I
(—Engineer) [F7: 100%)]. Here, our ensemble model NCESg7ry synthesized
the exact solution, which does not appear in the training data of NCES, while
the best search-based approach, EvoLearner, could only compute an approximate
solution with an F-measure of 73.17%. On the other hand, CELOE, ECII, and
ELTL failed to find any suitable solutions within the set timeout.

The scalability of the synthesis step of our approaches makes them particularly
suitable for situations where many class expressions are to be computed for the
same knowledge base. For example, taking into account the average training and
inference time of the Set Transformer architecture, one can conjecture that the
minimum number of learning problems from which the cost of deep learning
becomes worthwhile is: 11 for NCES vs. CELOE, 25 for NCES vs. EvoLearner,
24 for NCES vs. ELTL, and 96 for NCES vs. ECII. These values are calculated by
SOlVil’lg for n in n x Talgo,learn > Ttrain + Tinferencea where Talgo,learna Ttraina and
Tinference are the average learning time of a search-based approach, the training
time, and the inference time of NCES, respectively.

6 Conclusion and Future Work

We propose a novel family of approaches for class expression learning, which we
dub neural class expression synthesizers (NCES). NCES use neural networks to
directly synthesize class expressions from input examples without requiring an
expensive search over all possible class expressions. Given a set timeout per
prediction, we showed that our approach outperforms all state-of-the-art
search-based approaches on large knowledge bases. Taking training time into
account, our approach is suitable for application scenarios where many concepts
are to be learned for the same knowledge base. In future work, we will
investigate means to transfer the knowledge acquired on one knowledge base to
other knowledge bases. Furthermore, we plan to extend our approach to more
expressive description logics such as ALCHZQ(D).
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