
ExeKGLib: Knowledge Graphs-Empowered
Machine Learning Analytics

Antonis Klironomos1,2, Baifan Zhou3, Zhipeng Tan1,4, Zhuoxun Zheng1,5,
Gad-Elrab Mohamed1, Heiko Paulheim2, and Evgeny Kharlamov1,3

1 Bosch Center for Artificial Intelligence, Germany
2 University of Mannheim, Germany

3 University of Oslo, Norway
4 RWTH Aachen, Germany

5 Oslo Metropolitan University, Norway

Abstract. Many machine learning (ML) libraries are accessible online
for ML practitioners. Typical ML pipelines are complex and consist of a
series of steps, each of them invoking several ML libraries. In this demo
paper, we present ExeKGLib, a Python library that allows users with cod-
ing skills and minimal ML knowledge to build ML pipelines. ExeKGLib
relies on knowledge graphs to improve the transparency and reusability
of the built ML workflows, and to ensure that they are executable. We
demonstrate the usage of ExeKGLib and compare it with conventional
ML code to show ExeKGLib’s benefits.

Keywords: Machine learning · Knowledge graphs · Python library

1 Introduction

Due to the significant advancements in the realm of computer science, partic-
ularly in the field of machine learning (ML), there is a plethora of ML algo-
rithms and corresponding libraries publicly accessible [10,2,9,3]. The use of ML
is steadily rising in both academic and industrial settings [11]. Experts in various
domains are also learning ML for the sake of applying it to solve domain-specific
challenges, e.g. biologists [7,5], oncologists [6,1], and engineers in the industry
[8,12,4]. The development of functional and useful ML workflows can be complex
and time-consuming, which can pose a barrier for non-ML experts. Thus, there is
a need for a user-friendly approach that neither requires excessive knowledge nor
training in ML. While, existing tools such as Amazon Sage Maker6 or Google
AutoML7 provide convenient graphical user interfaces (GUI) and application
programming interfaces (API), yet do not provide open-source code libraries.

In this paper, we introduce ExeKGLib, an easily-extendable Python library
that supports a variety of methods for data visualization, data preprocessing
and feature engineering, and ML modeling. ExeKGLib works in two steps: (1)

6 https://aws.amazon.com/sagemaker
7 https://cloud.google.com/automl

https://aws.amazon.com/sagemaker
https://cloud.google.com/automl


2 Klironomos et al.

Search for
required libraries

Read multiple
documentations

Practice in using
discovered libraries

Combine multiple
libraries in a pipeline

Explain the pipeline
code to non-ML-experts

ExeKGLib is
sufficient

Only 1
documentation

No practice required 
after first task

ExeKGLib combines
them under-the-hood

The generated KG
facilitates this

New task

Fig. 1. Improvements on conventional data science workflow

Generate executable ML pipelines using knowledge graphs (KGs), (2) Convert
generated pipelines into functional Python scripts, and execute these scripts. We
rely on KGs for expressing the created pipelines to make them more understand-
able and reusable, and to verify that they are executable [13]. ExeKGLib can be
used by a wide range of users and in a variety of scenarios: from domain experts
that want to do ML to teachers and students for teaching and learning ML.

In the following sections, we start with demonstrating ExeKGLib’s usage.
Then, we describe the used KG schemata and discuss the underlying details of
KG construction and pipeline generation in Section 3.

2 Usage Demonstration

Our target user can generate an ML pipeline either by importing ExeKGLib’s
ExeKG Python module or by interacting with the provided Typer CLI without
writing code 8. We demonstrate the former usage with three sample Python
files 9. The pipelines represented by the generated sample KGs are briefly ex-
plained below:

1. ML pipeline: Loads features and labels from an input CSV dataset, splits
the data, trains and tests a k-NN model, and visualizes the prediction errors.

2. Statistics pipeline: Loads a feature from an input CSV dataset, normalizes
it, and plots its values (before and after normalization) using a scatter plot.

3. Visualization pipeline: Loads a feature from an input CSV dataset and
plots its values using a line plot.

The above pipelines (in form of executable KGs) can be executed using the
provided Typer CLI 10. To exhibit the pipelines’ transparency, we have visualized
the sample pipelines using Neo4j 11. The script to perform this visualization for
any executable KG is also provided.

Experimentation with the offered resources can verify the benefits of ExeKGLib
on the traditional data science process (Figure 1). In particular, using our tool to
solve a task reduces the overhead prior to the implementation, reduces the effort
during the code development, and increases the explainability of the resulting
ML pipeline. A brief display of the tool’s practical advantages for a generic clas-
sification task is illustrated in Table 1. In a conventional setting (table’s middle

8 https://github.com/boschresearch/ExeKGLib#usage
9 https://github.com/boschresearch/ExeKGLib/tree/main/examples

10 https://github.com/boschresearch/ExeKGLib#executing-an-ml-pipeline
11 https://bit.ly/exe-kg-lib-visualizations

https://github.com/boschresearch/ExeKGLib#usage
https://github.com/boschresearch/ExeKGLib/tree/main/examples
https://github.com/boschresearch/ExeKGLib#executing-an-ml-pipeline
https://bit.ly/exe-kg-lib-visualizations


ExeKGLib: Knowledge Graphs-Empowered Machine Learning Analytics 3

Table 1. Comparison between conventional code and ExeKGLib for a classification task

Pipeline steps Conventional code Code using ExeKGLib

1. Load data pd.read csv() + convert to numpy
ExeKG.create data entity()

ExeKG.create pipeline task()

2. Split data sklearn...train test split() ExeKG.add task()

3. Train sklearn...Classifier().fit() ExeKG.add task()

4. Evaluate sklearn...Classifier().predict() ExeKG.add task()

5. Visualize matplotlib.pyplot...() ExeKG.add task()

column), the user needs to separately import three different libraries (i.e. pandas,
scikit-learn, matplotlib) and use five of their modules. On the other hand,
when using ExeKGLib (table’s right column), the user needs a limited number of
libraries and modules, and thus learning is easier and faster by skipping reading
extensive documentation of various libraries.

3 System Design

ExeKGLib relies on KG schemata to construct executable KGs (representing an
ML pipeline) and execute them. Both of these processes use the rdflib Python
library combined with SPARQL queries to find and create KG components.

3.1 Underlying KG Schemata

ExeKGLib utilizes an upper-level KG schema (Data Science – namespace: ds)
that describes data science concepts such as data entity, task, and method. The
supported tasks and methods are separated into bottom-level KG schemata 12:

– Visualization tasks schema, which includes two types of methods: (1) The
plot canvas methods that define the plot size and layout. (2) The various kinds
of plot methods (e.g. line plot, scatter plot, or bar plot).

– Statistics and Feature Engineering tasks schema including methods such
as Interquartile Range calculation, mean and standard deviation calculation,
etc., which can also form more complex methods like outlier detection and
normalization.

– ML tasks schema representing ML algorithms like Linear Regression, MLP,
and k-NN and helper functions that perform e.g. data splitting and ML model
performance calculation.

ExeKGLib’s Python implementations of the above methods utilize common
libraries such as matplotlib and scikit-learn.

3.2 Executable KG Construction

As shown in Figure 2, the internal process of creating an executable KG starts
with extracting the columns from the input dataset (CSV file). ExeKGLib pop-
ulates the KG with data entities representing the target columns. Data entities
are then used as input to the ML pipeline tasks.

12 https://github.com/boschresearch/ExeKGLib#kg-schemata

https://github.com/boschresearch/ExeKGLib#kg-schemata


4 Klironomos et al.

Task

Data entities

Legend

Output

* from previous task

Input

Method

Parameters

Turtle
Columns

Object properties
(* = optional)

Datatype
properties

*

*

Executable KG

rdflib + SPARQL

Fig. 2. Executable KG construction phase

Afterward, ExeKGLib adds to the KG the entities representing the user-
specified task type (e.g. classification) and method type (e.g. k-NN), which are
taken from the provided bottom-level KG schemata; and links the current task
with the chosen method, input data entities, datatype properties, and the next
task. Throughout the process, the compatibility of the aforementioned KG com-
ponents is ensured by ExeKGLib based on the KG schemata. Finally, the created
KG is serialized and saved on the disk in Turtle.

3.3 ML Pipeline Execution

To execute a given KG, ExeKGLib parses the KG with the help of the above
KG schemata (Section 3.1). After that, the pipeline’s Tasks (owl:Individuals)
are sequentially traversed using the object property ds:hasNextTask. Based on
the IRI of the next Task (owl:Individual), the Task ’s type and properties are
retrieved and mapped dynamically to a Python object. Such mapping allows
for extending the library without modifying the KG execution code. Finally, for
each Task, the Python implementation of the selected method type is invoked.

4 Future Work

We plan to add additional algorithms to ExeKGLib to support a wider variety of
ML-related tasks, which can be conveniently done due to its good extendability.
In the future, we will build a system by integrating ExeKGLib with a graph-based
database. This will allow for easier management of the produced executable KGs,
quick visualization, and more convenient reuse.

Acknowledgements : The work was partially supported by EU projects Dome
4.0 (GA 953163), OntoCommons (GA 958371), DataCloud (GA 101016835),
Graph Massiviser (GA 101093202), and EnRichMyData (GA 101093202).

References

1. Abreu, P.H., Santos, M.S., Abreu, M.H., Andrade, B., Silva, D.C.: Predicting
Breast Cancer Recurrence Using Machine Learning Techniques: A Systematic Re-
view. ACM Computing Surveys 49(3), 52:1–52:40 (Oct 2016). https://doi.org/
10.1145/2988544

https://doi.org/10.1145/2988544
https://doi.org/10.1145/2988544


ExeKGLib: Knowledge Graphs-Empowered Machine Learning Analytics 5

2. Bartschat, A., Reischl, M., Mikut, R.: Data Mining Tools. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 9(4), e1309 (2019). https://doi.
org/10.1002/widm.1309

3. Heidrich, B., Bartschat, A., Turowski, M., Neumann, O., Phipps, K., Meisenbacher,
S., Schmieder, K., Ludwig, N., Mikut, R., Hagenmeyer, V.: pyWATTS: Python
Workflow Automation Tool for Time Series. arXiv preprint arXiv:2106.10157
(2021). https://doi.org/10.48550/arXiv.2106.10157

4. Huang, Z., Fey, M., Liu, C., Beysel, E., Xu, X., Brecher, C.: Hybrid Learning-
Based Digital Twin for Manufacturing Process: Modeling Framework and Imple-
mentation. Robotics and Computer-Integrated Manufacturing 82, 102545 (2023).
https://doi.org/10.1016/j.rcim.2023.102545

5. Kim, J., Ahn, I.: Infectious Disease Outbreak Prediction Using Media Articles
with Machine Learning Models. Scientific Reports 11(1), 4413 (Feb 2021). https:
//doi.org/10.1038/s41598-021-83926-2

6. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Ma-
chine Learning Applications in Cancer Prognosis and Prediction. Computational
and Structural Biotechnology Journal 13, 8–17 (Jan 2015). https://doi.org/10.
1016/j.csbj.2014.11.005

7. Libbrecht, M.W., Noble, W.S.: Machine Learning Applications in Genetics and
Genomics. Nature Reviews Genetics 16(6), 321–332 (Jun 2015). https://doi.

org/10.1038/nrg3920

8. Meng, L., McWilliams, B., Jarosinski, W., Park, H.Y., Jung, Y.G., Lee, J., Zhang,
J.: Machine Learning in Additive Manufacturing: A Review. JOM 72(6), 2363–
2377 (Jun 2020). https://doi.org/10.1007/s11837-020-04155-y

9. Mikut, R., Bartschat, A., Doneit, W., Ordiano, J.Á.G., Schott, B., Stegmaier, J.,
Waczowicz, S., Reischl, M.: The MATLAB Toolbox SciXMiner: User’s Manual and
Programmer’s Guide. arXiv preprint arXiv:1704.03298 (2017). https://doi.org/
10.48550/arXiv.1704.03298

10. Obulesu, O., Mahendra, M., ThrilokReddy, M.: Machine Learning Techniques and
Tools: A Survey. In: 2018 International Conference on Inventive Research in Com-
puting Applications (ICIRCA). pp. 605–611. IEEE (2018). https://doi.org/10.
1109/ICIRCA.2018.8597302

11. Sarker, I.H.: Machine Learning: Algorithms, Real-World Applications and Research
Directions. SN Computer Science 2(3), 160 (Mar 2021). https://doi.org/10.
1007/s42979-021-00592-x

12. Zeng, L., Al-Rifai, M., Chelaru, S., Nolting, M., Nejdl, W.: On the Importance of
Contextual Information for Building Reliable Automated Driver Identification Sys-
tems. In: 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC). pp. 1–8. IEEE (2020). https://doi.org/10.1109/ITSC45102.
2020.9294439

13. Zheng, Z., Zhou, B., Zhou, D., Zheng, X., Cheng, G., Soylu, A., Kharlamov, E.:
Executable Knowledge Graphs for Machine Learning: A Bosch Case of Weld-
ing Monitoring. In: The Semantic Web – ISWC 2022, vol. 13489, pp. 791–
809. Springer International Publishing, Cham (2022). https://doi.org/10.1007/
978-3-031-19433-7_45

https://doi.org/10.1002/widm.1309
https://doi.org/10.1002/widm.1309
https://doi.org/10.48550/arXiv.2106.10157
https://doi.org/10.1016/j.rcim.2023.102545
https://doi.org/10.1038/s41598-021-83926-2
https://doi.org/10.1038/s41598-021-83926-2
https://doi.org/10.1016/j.csbj.2014.11.005
https://doi.org/10.1016/j.csbj.2014.11.005
https://doi.org/10.1038/nrg3920
https://doi.org/10.1038/nrg3920
https://doi.org/10.1007/s11837-020-04155-y
https://doi.org/10.48550/arXiv.1704.03298
https://doi.org/10.48550/arXiv.1704.03298
https://doi.org/10.1109/ICIRCA.2018.8597302
https://doi.org/10.1109/ICIRCA.2018.8597302
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1109/ITSC45102.2020.9294439
https://doi.org/10.1109/ITSC45102.2020.9294439
https://doi.org/10.1007/978-3-031-19433-7_45
https://doi.org/10.1007/978-3-031-19433-7_45

	ExeKGLib: Knowledge Graphs-Empowered Machine Learning Analytics

