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Abstract. An increasing amount of distributed Linked Data is being
made available at different locations, with varying formats, structures,
interfaces and availability. Making use of that data through declarative
query languages such as SPARQL requires query engines capable of exe-
cuting queries over it. Efficiently executing queries over the data requires
efficient query plans, yet prior access to the information for producing
such plans may not be possible due to the distributed and dynamic nature
of the data. Furthermore, the inability to be aware of all data sources at
a given time, following links to discover data in the form of link traversal
may be needed. Consequently, query planning and optimisation may need
to be performed with limited information, and the initial plan may no
longer be optimal. Discovering additional information and data sources
during query execution and adjusting the execution based on such dis-
coveries using adaptive query processing techniques therefore could help
perform queries more efficiently. The aim of this work is to explore a va-
riety of existing or potential new techniques and their combinations for
query-relevant information acquisition and query plan adaptation within
the context of distributed Linked Data. Already prior results from mul-
tiple studies have demonstrated the benefits of various such techniques
within or beyond Linked Data and Link Traversal Query Processing,
and this work seeks to build upon such results to realise the benefits of
various techniques in practice to tackle performance-related challenges.

1 Introduction

An increasing amount of data [28] is being made available on the Web following
the Linked Data principles [14, 13]. The data is distributed for a variety of rea-
sons ranging from availability and performance [5] to privacy and personal data
management [39]. Making use of that data via abstraction layers in the form of
query languages such as SPARQL [1] requires query engines capable of executing
declarative queries over distributed Linked Data.

However, without knowledge of all data sources beforehand, approaches such
as Link Traversal Query Processing (LTQP) [21, 23, 22, 35] that rely on the
Linked Data principles are needed to discover data sources relevant for answer-
ing a given query. Additionally, studies have drawn attention to the variance in
the reliability [3], availability [37], contents [28], access options [28] and transfer
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rates [9] of distributed Linked Data sources, as well as the volume of the data [9].
Such variance results in a variety of challenges such as result completeness when
querying a potentially infinite Web of Linked Data [23], as well as a number of
query planning challenges with cardinality and selectivity estimation [27] and
potential order-dependent selectivities within the data [17].

While some studies have demonstrated the limited impact of local result
construction within LTQP scenarios [25], others [24, 35] have demonstrated how,
even in a distributed environment with network latency, the query plan plays
a vital role in efficient data access, depending on the use case. Unfortunately,
the traditional optimise-then-execute approach relies on pre-computed statistics
to provide sufficient information for producing an optimal query plan, and such
an approach may produce sub-optimal plans in more dynamic environments or
with limited information available [18], resulting in inefficient data access during
query execution.

Within the context of distributed Linked Data, collecting and maintaining
sufficient up-to-date information may not be feasible due to the variance de-
scribed earlier, and some information such as data transfer rates, latencies or
source availability may not be possible to know beforehand. Furthermore, within
access controlled distributed environments such as Solid [39], the data and the
information about it may vary depending on the access rights at the time of
execution, and the owners of the data may modify it or change access permis-
sons to it at any time. Maintaining up-to-date privacy-preserving aggregations
or precomputed results on top of such data therefore requires further investiga-
tion, but through data discovery via link traversal, it will be possible to access
the up-to-date data itself at any given time while respecting the data owner’s
access control policies.

Addressing the problems of query planning with initially missing information
or statistics, unexpected correlations, unpredictable transfer rates and dynami-
cally changing data, the concept of Adaptive Query Processing (AQP) has been
introduced as a category of techniques to adapt query execution as new infor-
mation becomes available [18]. Building on prior work, I will seek to apply such
techniques and explore new ones to enable more efficient use of LTQP over dis-
tributed Linked Data.

Following this introduction, section 2 seeks to provide a brief overview of
AQP, LTQP and other existing work, upon which the problem statement is
built in section 3. The research methodology is outlined in section 4, evaluation
plan in section 5, preliminary results are described in section 6 and conclusions
in section 7.

2 State of the Art

The concept of Adaptive Query Processing (AQP) involves the adaptation of
query execution based on runtime feedback, in an effort to find an execution
plan that is well-suited to runtime conditions [18]. Such feedback could include,
for example, information about the data being queried over [17], network la-
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tency [36], source availability [3] or quality-of-service metrics [29]. To achieve
this adaptivity, a query engine can interleave planning and execution as opposed
to first planning and then executing with no interleaving [18]. For implement-
ing such feedback and adaptivity, the concept of an adaptivity loop [18] has
been identified, described as having four phases [18], with a total of five when
considering pre-plan optimisation [29]:

1. Plan pre-optimisation based on information available at the time.
2. Runtime monitoring of parameters relevant to the goals of the system,

and collection of metrics relevant for the analysis of the current plan and
execution.

3. Plan analysis, to evaluate whether the goals are being met and if any-
thing should be changed, and to determine whether re-optimisation should
be done, taking into consideration the cost of re-optimisation and plan mi-
gration.

4. Plan re-optimisation, to find the next optimal plan, taking into consid-
eration the techniques available for adjusting the plan and the points of it
they allow modifications at, such as materialisation points or scheduling of
operations.

5. Actuation, to implement the necessary changes from re-optimisation, in-
cluding the migration of accumulated state inside various operators such as
joins.

The remainder of this section will provide a brief overview of LTQP, dataset
information acquisition methods and techniques in AQP.

2.1 Link Traversal Query Processing

Within the distributed Web of Linked Data [14, 13], knowing all relevant data
sources or their supported access methods beforehand may not be possible. Fur-
thermore, initiatives such as Solid [39] seek to distribute data into personal stor-
ages with access control [15], making available and accessible data dependent
on current access permissions. Tackling some of the challenges, Link Traversal
Query Processing (LTQP) [21, 23, 22, 35] offers a query execution paradigm that
relies on only the basic Linked Data principles, by following links during query
execution to discover data to query over. Unfortunately, such an approach, in ad-
dition to posing limitations with result completeness [23], also relies on some form
of heuristics [21] or guidance [35] to efficiently discover relevant data through
chains of links, as opposed to following all links in an arbitrary order. With no
information on the data necessarily being queried over available beforehand in
LTQP, producing optimal query plans prior to query execution becomes poten-
tially infeasible, calling for adaptive approaches to adjust the execution as data
is discovered.

2.2 Dataset Information Discovery

With query planning taking advantage of information on the data to produce
optimal query plans [18], queries over distributed Linked Data benefiting from
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information on data location [5], and with LTQP benefiting from guidance in
selecting links to follow [35], acquiring such information is needed for the pur-
poses of evaluating whether one query plan or execution approach is closer to
optimal than another one, or if one data source or link should be prioritised
over another. Various approaches have been investigated for making information
about datasets available:

– Dataset summaries, such as Vocabulary of Interlinked Datasets (VoID) [8]
for describing the access methods or structural information such as the total
number of triples, distinct subjects, occurrences of predicates and similar.

– Characteristics sets [30] for estimating the cardinalities of large numbers
of joins in bottom-up query processing, with techniqus for sample-based
characteristics estimation [26] for datasets.

– Approximate Membership Functions (AMFs) [38], such as Prefix-
Partitioned Bloom Filters (PPBFs) [5] and the extended Semantically Par-
titioned Bloom Filters (SPBFs) [7], already applied to reduce access to
datasets known to not contain data relevant for answering a query [7, 34].

– Locational Indexing [5, 6], for efficiently locating data relevant for answer-
ing a query in a distributed environment.

– Shape Trees [31], Solid Type Index [42] or other techniques of summaris-
ing locations of data within a data source, to help efficiently locate relevant
data.

2.3 Query Adaptation Techniques

Through adaptation of the query execution, advantage can be taken of newfound
information. While the techniques proposed for implementing adaptivity differ
in their level of interleaving between query execution, plan exploration and plan
modification, two main approaches have been identified [18]:

– Inter-query adaptivity as the adaptation of subsequent query executions.
While such an approach could be a natural next step for systems following
the optimise-then-execute paradigm, imposing limited runtime overhead, it
may prove insufficient or of limited benefit in environments where subse-
quent queries have little in common, or where the costs of operations or the
characteristics of the data change frequently.

– Intra-query adaptivity, where the execution of a query is adapted on-
the-fly during execution, calling for techniques that can accommodate such
adaptation at runtime. This will also be the main focus of this work.

While different categorisations exist [29, 2, 27] for implementations of intra-
query adaptivity, five major approaches could be identified across them as a
compromise:

– Operator-internal techniques, using the implementation of a logical op-
erator to achieve adaptivity, without requiring changes to the logical query
plan. Techniques such as Symmetric Hash Join (SHJ) [41, 28], XJoin [36],
MJoin [19] and Adaptive Group Join (agjoin) [3] could fit this category.
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– Data partitioning techniques, to process different parts of the data differ-
ently in a fully pipelined environment, effectively applying different query
plans on them, such as on a tuple level. Techniques such as Eddies [12, 2],
State Modules (SteMs) [32] and STAIR [17] could fit this category.

– Plan partitioning techniques, to alter the plan at blocking operators or
materialisation points, to delegate subplan selection from planning to exe-
cution phase, if sufficient information to select one is unavailable prior to
execution [16].

– Scheduling-based methods, attempting to hide delays or produce results
faster by rescheduling parts of the logical query plan based on intermediate
results or unexpected delays. Techniques such as query plan scrambling [9]
could fall within this category.

– Redundant-computation methods, to execute multiple plans simulta-
neously until the best-performing one is found and the others are termi-
nated [11].

3 Problem Statement and Contributions

Building upon the existing work in section 2, this thesis will aim to overcome the
challenges of traditional query processing outlined in section 1 through the use
of adaptive techniques to achieve efficient Link Traversal Query Processing over
dynamic distributed Linked Data with no prior knowledge of the data available
prior to execution, while also being able to take advantage of any information
made available through dataset descriptions. The research questions of this work
are the following:

– Question 1: Assuming no prior knowledge about the data being queried
over, how and what type of information can be discovered during query
execution?

– Question 2: Taking advantage of newfound information during query exe-
cution, what type of new or existing techniques and approaches improve the
query execution?

– Question 3: What kind of impact can be achieved through the various
techniques? How do they affect the execution of the query, on their own or
combined?

These research questions have inspired the following hypotheses:

– Hypothesis 1: It is possible to obtain sufficient information during query
execution to produce an improved version of the initial plan. On average, it
will take less time to migrate to the new plan and execute it than it would
to finish with the initial one.

– Hypothesis 2: The execution time can be reduced by an order of magnitude
by introducing a minimal amount of information about the data, for example
approximate cardinality estimates.
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– Hypothesis 3: The information used to guide query planning need not be
accurate, as long as it is a step towards more accurate information compared
to having no information available at all. That is, Hypothesis 2 holds even
with inaccurate information.

– Hypothesis 4: Through the use of information available on the data be-
ing queried over, together with techniques in adapting the query execution,
results can be produced not only faster overall, but also at a more stable
rate over the execution of the query. That is, the delay between subsequent
results remains, on average, constant. Without the techniques applied, this
is expected to not be the case.

The base assumption behind the hypotheses is that, without any prior knowl-
edge of the data, the query engine will produce sub-optimal query plans with
trivial errors such as inefficient join orders. Thus, provided but a mere inkling
of information slightly indicative of the correct direction, the engine shall al-
ready succeed in avoiding such trivial errors and perform an order of magnitude
faster. Additionally, applying adaptive techniques should help alleviate any issues
within a distributed environment and provide more efficient access to relevant
data, helping the engine produce results both faster and at a more constant rate
over the duration of the execution.

4 Research Methodology and Approach

Following section 3 and section 1, the aim of this work is to build upon existing
research to enable efficient querying with LTQP over distributed Linked Data in
practice with no prior knowledge available. This is to be achieved by applying
techniques for discovering information about datasets at runtime, together with
those for adapting the query plan to take advantage of that information.

The approach will involve the following steps, with prototype implementa-
tions and their evaluation outlined in further detail later in section 5, as the
overall evaluation revolves around them:

1. Review of techniques and approaches, to discover existing ones us-
ing publications freely available online. This is to include publications both
within and beyond the context of LTQP or distributed Linked Data, as
deemed relevant, to discover also techniques not previously applied to LTQP,
if any. For example, there may be techniques in querying over traditional
relational databases or streams that could be of interest. Furthermore, stan-
dards, standards drafts and prototype implementations involving techniques
of interest are to be considered.

2. Identification of approaches of interest, both existing and novel new
ones as they are dicovered, and their **prototype implementations**. The
aim is to establish an understanding of applying such techniques in practice.

3. Evaluation of the techniques based on their prototype implementations,
to establish an understanding of the impact they have on their own and in
combination with each other.
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4. Summarisation of results throughout the process as they are discovered,
to contribute to the field of Semantic Web research by providing insights
into adaptive LTQP over distributed Linked Data.

The value of the research is to be found in the exploration of a variety of
AQP techniques within LTQP over distributed Linked Data in particular. Such
investigation has been deemed interesting in existing work [35]. The contribu-
tions of this work should help take the next steps towards the use of LTQP
in practice, by providing meaningful results and reusable implementations for
practical applications.

5 Evaluation Plan

For evaluating the elements of this work, various techniques will be applied
through prototype implementations that are evaluated both on their own when
possible and in combination with each other as deemed appropriate:

– Prototype implementations will be built upon a modular open-source
SPARQL query engine [33]. Such a query engine has previously been used [35]
in LTQP for evaluating approaches, and should therefore prove adequate for
this purpose.

– Evaluation will be done using established benchmarking datasets such as
the LDBC Social Network Benchmark [20, 10], having also been previously
adapted for and used with LTQP [35] within the context of Solid [39]. Other
benchmarks or reproducible real world datasets will also be considered as
deemed interesting, assuming they can be adapted for use with Linked Data.

Drawing inspiration from existing work on LTQP, Linked Data and AQP,
metrics such as the following are to be considered to understand the impact of
the techniques:

– Result completeness, to ensure fair evaluation between techniques, should
they produce different results. While not expected, this will be controlled.

– Number of network requests done by the query engine to produce a set
of results. Existing work has demonstrated how the same set of results can
be produced with fewer network requests using specific techniques [34, 38].

– Server and client load, in the form of processor and memory utilisation.
Existing work has demonstrated how decreases in resource consumption on
one side can be attained at the expense of the other side [40], and therefore
any tests should take into consideration both sides.

– Delay before initial query results, as some techniques or implementa-
tions may result in delays prior to producing initial results [34].

– Rate of producing results, to determine how different techniques affect
the intervals between intermediary results or the total execution time.
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The last two metrics can be explored via the diefficiency [4] approach, de-
signed to help measure the efficiency of a query engine over time. Such a tech-
nique should prove interesting to compare the impact of various techniques over
time, and has also been previously applied [35] within the context of LTQP.

Through the observation of these metrics, it should be possible to confirm or
reject specific instantiations of the hypotheses presented in section 3.

6 Preliminary Results

Thus far, preliminary results from an initial review of approaches are avail-
able, laying the foundation upon which to build the rest of the work. While an
overview of the those results has been outlined in section 1 and section 2, the aim
is to produce a comprehensive summary at a later stage. Envisioned immediate
future work includes the use of some adaptations of Prefix-Partitioned Bloom
Filters (PPBFs) [5] within the context of LTQP and Solid, as well as exploratory
prototyping with an Eddies-inspired query engine architecture. Additionally, ex-
periments are ongoing on the use of VoID [8] descriptions of datasets for join
order optimisation, with mixed initial results using a two-phase join ordering
methodology of initial zero-knowledge order followed by order based on initial
information.

7 Conclusions

Through the application of dataset information discovery and AQP techniques,
I aim to enable efficient LTQP over distributed Linked Data, without relying
on pre-made indexes or summaries, although such indexes and summaries will
still provide added value for query processing. This will ultimately enable more
efficient use of resources throughout the Web of Linked Data, while also making
the data more accessible.
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