
Query answering over the
polymorphic web of data

Cosimo Gregucci⋆

University of Stuttgart, Stuttgart, Germany
cosimo.gregucci@ipvs.uni-stuttgart.de

Abstract. Knowledge graphs are a versatile means to gather Semantic
Web data and are typically stored and queried with the W3C standards,
RDF and SPARQL. Despite the significant progress made in query pro-
cessing, predicting plausible answers in presence of missing facts remains
a challenge. This aspect has been tackled by proposing methods to pre-
dict links and solve queries in some reduced fragments of SPARQL. Thus
far, I have explored two parallel directions for this thesis. First, I study
how to use knowledge graph embedding methods to predict missing facts.
In particular, I explore how to combine different knowledge graph embed-
ding methods to improve the quality of the predictions. Second, I study
how to connect techniques to query knowledge graphs from these two
research areas, namely database query processing, and graph learning.
The former techniques provide actual answers of a query, while the lat-
ter provide plausible ones. My hypothesis is that I can define a common
query interface, based on SPARQL, to provide answers from these poly-
morphic data sources. To this end, I propose an extension for SPARQL,
called polymorphic SPARQL.

Keywords: link prediction · ensemble · query answering · polymorphic

1 Introduction

The emergence of large knowledge graphs (KGs) stored and queried using the
W3C standards RDF [5], and SPARQL [9], has encouraged many researchers to
improve query processing over KGs [10]. SPARQL is a database query language
and, as such, the result of a SPARQL query over a given dataset is defined
based on the data that is in the dataset. Thus, given that knowledge graphs are
known to be incomplete, in presence of missing links, some answers might not
be retrieved by the SPARQL engine.

Such aspect has been addressed by the graph learning community, who iden-
tify two problems: 1) predicting missing links, which is known as link prediction,
and 2) predicting plausible answers of first-order logic query, which is known as
complex query answering.

According to the graph learning community, a KG is a triple (V,R, E), where
V and R are two finite sets, whose elements are called entities and relation

⋆ Category: Early Stage PhD



2 C. Gregucci

Fig. 1: A sub-graph that exhibits heterogeneous relational patterns [15].

names, and E is a subset of V × R × V that represent relationships between
entities. Relationships are triples (h, r, t) where h and t are called the head and
the tail entities.

Like complex query answering, link prediction can be seen as answering first-
order logic queries. Indeed, the link prediction problems of finding sensible tails
for a given pair of head and relation name, and finding sensible heads for a given
pair of relation name and tail, denoted (h, r, ?t) or (?h, r, t), correspond to the
respective first order queries (x).r(h, x) and (x).r(x, t). Since SPARQL has the
same expressive power as relational calculus [1], a safe subset of first-order logic
queries, link prediction and complex query answering methods can be used to
return plausible SPARQL answers.

Knowledge graph embeddings (KGEs) are a prominent approach for both
problems, link prediction [3, 18, 20], and complex query answering [11, 16, 17].
Relations in the graph may follow patterns (Figure 1) that can be learned. For
example, some relations might be symmetric and others might be hierarchical.
However, the existing approaches have two limitations:

L1. The learning capability of different knowledge graph embedding methods
varies for each pattern and, so far, no single method can learn all patterns
equally well (see Table 1).

L2. Both complex query answering and link prediction methods only support
a limited subset of SPARQL. Indeed, existing link prediction methods are
restricted to the atomic queries (x).r(h, x) and (x).r(x, t), and complex query



Query answering over the polymorphic web of data 3

Table 1: Specification of query representation of baseline and state of the
art KGE models and respective pattern modeling and inference abilities. ◦ is
element-wise complex product together with relation normalization. S = Sym-
metry, A = Antisymmetry, I = Inversion, C = Composition, H = Hierarchy

Model Query Embeddings S A I C H

TransE [3] q = h + r q, h, r ∈ Rd × ✓ − 0 ✓ − 0 ✓ − 0 ×
RotatE [18] q = h ◦ r q, h, r ∈ Cd ✓ − 2 ✓ − 2 ✓ − 2 ✓ − 2 ×
ComplEx [20] q = h × r q, h, r ∈ Cd ✓ − 2 ✓ − 2 ✓ − 2 × ×
DistMult [28] q = h · r q, h, r ∈ Rd ✓ − 0 × × × ×
RefH [4] q = Ref(θr)h q, h ∈ Hd ✓ − 0 × × × ✓ − 0

answering methods are restricted to queries with constants (called anchors),
returning a single variable, or having no cycles.

In this thesis, I address these two limitations. Regarding L1, I developed a
method to combine different knowledge graph embedding methods using atten-
tion, and showed that the combined method can outperform the individual ones.
I published a paper [7] showing these results, and I am currently working on im-
provements to this idea. Regarding L2, I am studying how to integrate SPARQL
services with link prediction services to return both, actual answers from explicit
links and plausible answers from predicted links. According to [16] completing
the knowledge graph with the predicted links before executing queries would
result in a graph that is too dense, thus I plan to retrieve the predictions at
query runtime. Moreover, by completing the graph, the predicted links would
be indistinguishable from the actual ones. To this end, I will define a common
interface, I called polymorphic SPARQL (p-SPARQL), on top of both interfaces.

2 Related work

This section presents the work related to limitations L1 and L2.

2.1 Combination of knowledge graph embeddings

Xu et al. [27] show that the combination of multiple runs of low-dimensional em-
bedding models can outperform the corresponding individual high-dimensional
embedding model. Unlike my approach [7], they do not combine different meth-
ods to combine the different learning capabilities.

Most methods combining different KGEs train models separately and then
combine their scoring function [13, 21, 23, 24]. Unlike these approaches, my ap-
proach combines the multiple vector representations of a query and uses attention
to select, for each query, the best suited representations.

I combine multiple vector representations to increase the learning capabili-
ties of individual methods. Another way to increase the learning capability of a



4 C. Gregucci

method is to embed queries into spaces that combine different geometrical spaces.
For example, Gu et al. [8] combines Hyperbolic, Spherical, and Euclidean spaces,
and UltraE [25] uses an Ultra-hyperbolic manifold, which generalizes Hyperbolic
and Spherical manifolds allowing to simultaneous embed multiple distinct hier-
archical relations and non-hierarchical ones in a single heterogeneous geometric
space. So far, I have studied how to combine query vectors rather than geomet-
ric spaces [7]. My proposed method combines vectors in Euclidean space, and
then projects them to non-Euclidean manifolds to learn hierarchical relations;
it is not limited to a single geometry, and I will adapt it to combine vector
representations beyond the Euclidean space.

2.2 Including link prediction in SPARQL queries

Complex query answering Most approaches for complex query answering
map queries into probability distributions [17], or regions [11, 16] in the vector
space. They map first-order logic queries to directed acyclic graphs (DAGs).
They are also called dependency graphs, and their nodes are the constants and
variables in the query. For each atom r(u, v) a directed edge between u and
v with label r is in the dependency graph. The direction of each edge is cho-
sen conveniently to guarantee that the dependency graph have a unique sink
node(see Figure 2). The dependency graph is used to define the operations that
are performed to get to the representation of the sink.

As we already mentioned, existing query answering methods do not support
every first-order query, even for reduced first-order logic fragments, such as con-
junctive queries.

The limitations are that queries must return a single variable (which is the
sink), have no cycles, and all local sources (i.e., nodes with no entering edges)
are constants. The following conjunctive query violates all these conditions, and
hence cannot be solved by the existing methods: (x, y).∃z∃u(p(x, y) ∧ q(y, z) ∧
r(z, x)∧s(u, x)). Unlike the existing methods, the interface I will define, called p-
SPARQL, will support all basic graph patterns by combining standard SPARQL
interfaces with link-prediction services.

(x).(∃y.(Win(TuringAdward, y) ∧ Citizen(Canada, y) ∧ Graduate(y, x))

Fig. 2: Dependency graph of a first-order query asking “Where did Canadian
citizens with Turing Award graduate?” [16].



Query answering over the polymorphic web of data 5

Including similarity metrics in SPARQL query Several works propose
extending SPARQL with similarity functions [12,14].

However, the aforementioned approaches compute similarity among entities,
while in link prediction a similarity metric is computed to match a query to a
candidate answer.

3 Problem statement and contributions

In this thesis I will study 1) how to combine knowledge graph embeddings, and
2) how to include link prediction in SPARQL queries.

How to combine knowledge graph embeddings. In this thesis, I study
how to improve the link-prediction task by combining query vectors, computed
with different KGE methods.

Let M be a set of several existing KGE methods such as TransE [3], Ro-
tatE [18], ComplEx [20], DistMult [28], AttE [4]. For each query q = (h,r,?),
let the query representation set be Q = {qm | qm = gmr (h),m ∈ M} where
qm = gmr (h) is the query representation for the method m. For example, TransE
defines qTransE = gTransEr (h) = h + r. Our problem is thus to find a function gΘ
such that the combined method mC performs better than each method m ∈ M
separately. I can define a combined query qC , as a function of the query vectors
qm, qC = gΘ(qTransE, . . . , qAttE), where gΘ is a combination function and Θ is
a vector of parameters for the function.

Hypothesis 1. The query vectors can be combined using a relation-specific
attention mechanism, where the best-performing models should have the
most importance.

The related research questions are:

RQ1. Is attention able to give more importance to the best-performing models?
RQ2. Is the combined model able to outperform the single models in the link

prediction task?

How to include link prediction in SPARQL query. In this thesis, we will
address the problem of how to compute plausible answers for SPARQL having,
as input, a SPARQL service s and a link-prediction service m, both defined over
the same knowledge graph G.

For convenience, I will focus on the SPARQL fragment consisting of basic
graph patterns whose entities and relation names occur in G, and no variables are
allowed in predicate position. This SPARQL fragment corresponds to conjunctive
queries, that is, first-order logic queries (x1, . . . , xj).(∃y1 · · · ∃yz.φ) where φ is a
conjunction of atoms (p1(u1, v1)∧· · ·∧pn(un, vn)), variables x1, . . . , xj , y1, . . . , yz
are the variables occurring in φ, and sets {x1, . . . , xj} and {y1, . . . , yz} are dis-
joint. As we already pointed out, link-prediction and complex query answering



6 C. Gregucci

methods can be used to provide plausible answers to a restricted set of these
queries.

Given a conjunctive query qC , we can evaluate qC in service s to obtain a set,
JqCKs, containing all mappings µ = (x1 7→ a1, . . . , xn 7→ an) that are answers to
qC in G. We will write µx7→a to denote a mapping {x 7→ a}. On the other hand,
a query qC cannot be evaluated at the link prediction service m.

However, if we consider qC to be composed by a set of atomic queries q of
the form (x).r(h, x) and (x).r(x, t), then, when considering each atomic query
q separately, it is possible to directly evaluate q in m. In this case, the result is
a set of pairs (µx 7→u, τµx 7→u) where u is an entity of graph G, and τu is a score
given to mapping µx7→u.

If we now want to evaluate the atomic query q in both services, m, and s,
we will notice a difference in the form of the answers: the service s returns set
of answers, while the service m returns a set of pairs.

In a high level, our problem is how to define a sensible semantics that extends
the SPARQL semantics to incorporate scores to the answers. To define such
extended semantics, called p-SPARQL, desiderata must consider, for example,
that every answer µ ∈ JqKs must have the higher possible score, since we know
that µ is an actual answer. Otherwise, if µ /∈ JqKs, it should have a lower score
that accounts for the plausibility of the answer.

Returning scores for all possible mappings is impractical in SPARQL because
datasets are huge. Instead, given a number k ≥ 0, we can define a service, called
s+k, that returns a set, called JqKs+k, of pairs (µ, τµ) where τµ is the score given
to mapping µ, and JqKs+k contains all mappings µ ∈ JqKs plus the top k scored
answers according to the p-SPARQL semantics I will propose.

When it is possible to evaluate q directly at both services, the definition of
JqKs+k is trivial: return all answers of JqKs (assigning them the highest score) plus
the top k results given by m. In the other cases, the problem is more complex. For
example, if query q is (x, y).p(x, y) then we cannot use directly service m because
m does not support query q. Instead, we can iterate over every entity h in graph G
to answer query (y).p(h, y) to get the scores of solutions µy 7→t ∈ J(y).p(h, y)Ks+k.
Similarly, we can compute the scores of solutions µx 7→h ∈ J(x).p(x, t)Ks+k. This
observation leads to the following hypothesis:

Hypothesis 2. The score for a mapping µ can be computed as the combination
of the scores of its individual mappings µvariable 7→entity.

Hypothesis 3. We can define an efficient algorithm that does not require com-
puting the score of every mapping µvariable 7→entity.

For example, given a query (x, y).(r(x, y) ∧ p(y, c)), the score of a mapping
µ = {x 7→ a, y 7→ b} depend on the scores given by m to mappings µx 7→a and
µy 7→b for the respective queries (x).r(x, b), (y).p(a, y), and (y).p(y, c). If mapping
µx 7→a has a low score, it may not be worth to compute the score of mapping
µy 7→b because the score of the combined mapping µ will anyway be low.

RQ3. How can we combine the scores given to mappings by the link prediction
service to obtain sensible scores for the combined mappings?

RQ4. How can we return the answers µ ∈ JqKs+k efficiently?



Query answering over the polymorphic web of data 7

4 Research Methodology and Approach

In this section, I describe the approach I am following for solving the problems
identified in the previous section.

Combination of query vectors I already mention that a KG can follow dif-
ferent patterns, as shown in Figure 1, and that different KGE methods cannot
learn all patterns equally well. Table 1 shows the patterns that a KGE method
can learn, along with the number of constraints that it has to impose to do so,
for each dimension. For example, RotatE defines transformations as rotations
gRotatE
r (h) = h ◦ r in Complex space. In this way, RotatE can enforce both
h ◦ r = t, t ◦ r = h if r2 = 1, and thus, requires two constraints r ̸= −1 and
r ̸= 1 to express antisymmetrical relations. However, TransE can model anti-
symmetrical patterns naturally, without imposing any constraint, but it is not
able to learn symmetrical patterns.

In [7], we showed that an attention-based combination of KGEs can exploit
the advantages of each KGE method used in the combination. The combined
query representation is defined as qC =

∑
αiqi, where each weight αi can be

computed by using an attention mechanism [4]:

αi =
exp(g(wqi)∑
j exp(g(wqj)

,

where i and j identify models in M, and g(x) = wx is a function with trainable
parameter w. This version of our method is called Spherical Embedding with
Attention (SEA).

A variant of this method, called Spherical Embedding with Pointcaré Atten-
tion (SEPA), projects the combined query qC to a non-Euclidean manifold, i.e.
the Poincaré ball, via the exponential map qM

C = exp0(qC). The score func-
tion is score(q, a) = d(qM

C ⊕ r,a), where qM
C , r, a are points on a manifold M,

exp0(.) is the exponential map from origin, and ⊕ is Mobius addition.
In future work, we plan to combine various manifolds besides combining the

query vectors in knowledge graph embedding.

Including link prediction in SPARQL Regarding RQ3, if a query involves
more than one literal, then it may involve the scores given to more than one
fact. If the score of a mapping µ reflects a probability, then we should consider
this as the joint probability given to the facts involved into this mapping µ. For
example, if µ = {x 7→ a, y 7→ b}, and the query q is (x, y).(p(x, y) ∧ r(y, c)),
then the score of µ for query q must reflect the probability of p(a, b) ∧ p(b, c),
which is the joint probability of the links p(a, b) and p(b, c). The computation of
this joint probability from the marginal probabilities of these links depends on
the conditional probabilities between these links, which are related to the scores
of mappings µ and µy 7→b for the queries (x, y).p(x, y) and (y).r(y, c). Assuming
independence between the links, we can simplify the score definition. However,



8 C. Gregucci

this assumption may not capture some patterns satisfied by relations in the
graph. Moreover, it could also be possible to use other frameworks for combining
scores, such as using t-norm fuzzy logics.

Regarding RQ4, if we know that the top k predicted answers have a score
over a certain threshold, then we can discard mappings µ such that we can infer
that the score of µ is below the threshold. Indeed, if scores are probabilities
(where a score 1 is given to actual links), and a marginal probability is below
the threshold, then we can infer that the joint probability is also below the
threshold. To use this idea, we can index the top answers for queries of the form
(x).∃y.p(x, y) and (y).∃x.p(x, y) for each relation name p in graph G.

5 Evaluation plan

In this section, I will describe the benchmarks and the metrics that I will use
for evaluating the proposed solutions.

Combination of query vectors In [7], I used the following standard bench-
marks for the evaluation:

– Wordnet: WN18RR [6] is a subset of WN18, which contains a mixture of
symmetric and antisymmetric as relational patterns, and hierarchical struc-
tural patterns. WN18RR contains 11 relations, 86,835 training triples, and
40,943 entities. Compared to the other datasets in KGE literature, WN18RR
is considered sparse;

– FreeBase: FB15k-237 [19] is the subset of FB15k from removing leakage
of inverse relations [6]. FB15k-237 is less sparse than WN18RR and mainly
contains composition patterns. It contains 237 relations, 272,115 triples, and
14,541 entities.

– NELL: NELL-995 [26] contains 75,492 entities and 200 relations, having ∼
22% hierarchical relations. I use a subset of NELL-995 with 100% hierarchy,
created in [2].

I use the popular ranking metrics [22] namely Mean Reciprocal Rank (MRR),
and Hits@k, k = 1,3,10. For future works, we plan to use a similar set of datasets
and metrics.

Including link prediction in SPARQL queries Regarding RQ3, I plan to
evaluate our method using the same datasets used by existing complex query
answering methods [11,16], which are created from the ones showed in Section 5
and using ranking-based metrics. Besides, I plan to create an additional dataset
composed of general BGP queries, which cannot be answered by existing com-
plex query answering methods. I also plan to evaluate our method with SPARQL
query performance benchmarks, after adapting them to the link prediction set-
ting. Regarding RQ4, we have two metrics: the execution time of queries, and
the space and memory used by p-SPARQL.



Query answering over the polymorphic web of data 9

6 Results

Our work [7] showed that the approaches described in Section 2.1 are able to
outperform the individual models used in the combination. Specifically, the hy-
perbolic version of our combined model (SEPA) outperforms all baselines in low
dimensions while the Euclidean one (SEA) is the best model in high dimensions
(RQ2). It also showed that the attention mechanism can give more importance
to the best models for the specific kind of relation involved in the query (RQ1).

7 Conclusions

In this thesis, I want to exploit existing knowledge graph embedding methods, to
improve their performance in the link prediction task and enhance their usability.

As a first step, I studied how to combine existing KGE methods to improve
their performance in link prediction task, which was shown in [7]. Our approach
facilitates the combination of the query representations from a wide range of
popular knowledge graph embedding models. In future work, we will combine
various manifolds besides combining query embeddings. Additionally, the pro-
posed approach could be applied to other tasks, e.g., use an attention mechanism
to combine different multi-hop queries [16,17].

The second step of this thesis will be to bridge between the two research areas
of database query processing and machine learning, by proposing p-SPARQL,
which integrates link prediction within SPARQL queries. This would allow using
link prediction within more complex queries, enhancing their usability.

Acknowledgments This PhD is part of the KnowGraphs project, receiving
funding in the European Union’s Horizon 2020 research and innovation program
under the Marie Sk lodowska-Curie grant (agreement No: 860801). Furthermore, I
would like to thank my supervisor Prof. Dr. Steffen Staab, and my co-supervisors
Dr. Daniel Hernández and Mojtaba Nayyeri for their continuous support.

References

1. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: ISWC 2008
2. Balazevic, I., Allen, C., Hospedales, T.: Multi-relational poincaré graph embed-

dings. NeurIPS 32, 4463–4473 (2019)
3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating

embeddings for modeling multi-relational data. Advances in neural information
processing systems 26 (2013)

4. Chami, I., Wolf, A., Juan, D.C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyper-
bolic knowledge graph embeddings. In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. pp. 6901–6914 (2020)

5. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax.
Tech. rep., W3C Recommendation (02 2014)

6. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge
graph embeddings. In: AAAI (2018)



10 C. Gregucci

7. Gregucci, C., Nayyeri, M., Hernández, D., Staab, S.: Link prediction with attention
applied on multiple knowledge graph embedding models. In: ACM WebConf (2023)

8. Gu, A., Sala, F., Gunel, B., Ré, C.: Learning mixed-curvature representations in
product spaces. In: International Conference on Learning Representations (2018)

9. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Tech. rep., W3C Recom-
mendation (03 2013)

10. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G.D., Gutierrez, C.,
Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S., et al.: Knowledge graphs.
ACM Computing Surveys (CSUR) 54(4), 1–37 (2021)

11. Huang, Z., Chiang, M.F., Lee, W.C.: Line: Logical query reasoning over hierarchical
knowledge graphs. In: Proceedings of the 28th ACM SIGKDD. pp. 615–625 (2022)

12. Kiefer, C., Bernstein, A., Stocker, M.: The fundamentals of isparql: A virtual triple
approach for similarity-based semantic web tasks. In: The Semantic Web, pp. 295–
309. Springer (2007)

13. Krompaß, D., Tresp, V.: Ensemble solutions for link-prediction in knowledge
graphs. In: Proceedings of the 2nd Workshop on Linked Data for Knowledge Dis-
covery, Porto, Portugal. pp. 1–10 (2015)

14. Kulmanov, M., Kafkas, S., Karwath, A., Malic, A., Gkoutos, G.V., Dumontier,
M., Hoehndorf, R.: Vec2sparql: integrating sparql queries and knowledge graph
embeddings. bioRxiv p. 463778 (2018)

15. Nayyeri, M., Vahdati, S., Sallinger, E., Alam, M.M., Yazdi, H.S., Lehmann, J.:
Pattern-aware and noise-resilient embedding models. In: ECIR (2021)

16. Ren, H., Hu, W., Leskovec, J.: Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. In: ICLR 2020 (2020)

17. Ren, H., Leskovec, J.: Beta embeddings for multi-hop logical reasoning in knowl-
edge graphs. NeurIPS 33, 19716–19726 (2020)

18. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: Knowledge graph embedding by rela-
tional rotation in complex space. In: ICLR 2019, New Orleans, LA, USA (2019)

19. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: Proceedings of the 3rd workshop on continuous vector space
models and their compositionality. pp. 57–66 (2015)

20. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: ICML (2016)

21. Wang, K., Liu, Y., Ma, Q., Sheng, Q.Z.: Mulde: Multi-teacher knowledge distilla-
tion for low-dimensional knowledge graph embeddings. In: ACM WebConf (2021)

22. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey
of approaches and applications. IEEE Transactions on Knowledge and Data Engi-
neering 29(12), 2724–2743 (2017)

23. Wang, Y., Gemulla, R., Li, H.: On multi-relational link prediction with bilinear
models. In: AAAI (2018)

24. Wang, Y., Chen, Y., Zhang, Z., Wang, T.: A probabilistic ensemble approach for
knowledge graph embedding. Neurocomputing (2022)

25. Xiong, B., Zhu, S., Nayyeri, M., Xu, C., Pan, S., Zhou, C., Staab, S.: Ultrahyper-
bolic knowledge graph embeddings. In: ACM SIGKDD (2022)

26. Xiong, W., Hoang, T., Wang, W.Y.: Deeppath: A reinforcement learning method
for knowledge graph reasoning. In: EMNLP (2017)

27. Xu, C., Nayyeri, M., Vahdati, S., Lehmann, J.: Multiple run ensemble learning
with low-dimensional knowledge graph embeddings. In: IJCNN (2021)

28. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: ICLR (2015)


	Query answering over the polymorphic web of data

