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Abstract. At Thales, we studied the use of Knowledge-Based System (KBS) to 

create a crew-assistant, inserted inside the safety-critical cockpit systems. Devel-

oping a KBS as a safety-critical system induced new needs such as a high amount 

of verification activities or a bounded reasoning time. This paper aims at present-

ing our needs and related new challenges to the scientific community.  
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1 Introduction 

When you get on a plane or charge your smartphone with electricity produced by 

nuclear plants, you rely on safety-critical systems (SCS). Development of such high 

reliable systems must provide evidences that the system performs well its intended 

function and does not have any undesirable behavior that could lead to human injury or 

environmental damages. Since a few years the introduction of AI’s technics in SCS is 

extensively studied, in particular Machine Learning. Knowledge-Based Systems (KBS) 

are also considered for information retrieval or reasoning-based decision-making tasks. 

Their ability to add value to existing domain knowledge or to provide a causal expla-

nation makes them attractive.   

At Thales, we considered the application of KBS to create a cockpit-assistant sup-

porting crew decision-making during normal and abnormal situation. As example, it 

should detect automatically if aircraft’s landing airport becomes unreachable, explain 

the causes to the crew, and suggest diversion airports. This assistant relies on an OWL 

DL ontology where the TBox represent domain knowledge and the ABox represents 

current situation. Contextualized assistance or suggestions are built in soft real time 

using a combination of standard reasoning tasks: a “query task” extracting implicit in-

formation, a “consistency task” which uses consistency checks to assess if current sit-

uation status is correct, an “explanation task” which provides a comprehensible expla-

nations to the crew if errors exists inside ABox, followed by “root-cause task” which 

identifies a way to correct errors. These tasks are based on the Hermit reasonner1.  

Application in a safety-critical system context unveils new requirements concerning 

knowledge-based technologies that, to our best knowledge, are open scientific chal-

lenges. In this paper, illustrating by our results, we want to highlight three of them. 

                                                           
1  HermiT Reasoner: Home (https://www.hermit-reasoner.com) 
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2 Facilitating the design of a task-fit knowledge base 

Context: Safety-critical systems traditionally follow a certification process that en-

sure that enough evidences are collected to demonstrate the trustworthiness of the sys-

tem. KBS introduce a novelty: demonstrating that the knowledge base design is task-

fitted, meaning that it contains necessary and sufficient elements to perform the in-

tended function inside the desired operational domain, and no more.  

Our work: To guide the knowledge base design, we used seminal work of [6] as a 

guidance: starting from aeronautics domain ontology SESAR BEST2 AIRM, we refined 

them to select only the necessary elements for the expected tasks. During design, as 

proposed in [3], we performed error checking using OntoDebug3 and monitored metric 

using OntoMetrics4. Metrics of the original and obtained ontology are given in table 1. 

Remaining challenge: During ontology design, we noted that selecting pertinent 

concepts and relations required a high expertise in KB design, making difficult KB 

assessment. To accelerate the conception of KB, some methods to help traditional soft-

ware engineers would be appreciable. One valuable track could be to facilitating the 

assessment of ontology high-level properties described in [6] using ontology met-

rics. For example, if minimizing the depth, can easily be understood as a contributor to 

ontology intelligibility (explanations less complex) or deployability (paths explored 

quickly), impact of tangledness or attribute richness is hardly understandable.   

 

Ontology Classes Axioms Richness Depth Breadth Tan-

gledness 

Path 

Nb 

BEST  1177 34576  0.167 8 135 0.403 2256 

our 97 5989 0.1857 5 14 0.103 127 

Table 1. Ontologies Metrics  

3 Enhancing black box verification & validation  

Context: To allow deployment of KBS in SCS, in addition to classical verification 

and validation (VV) practices, one must verify that the whole KBS (eg. knowledge 

base, reasoner and additional algorithm) performs well its intended function and does 

not present any unintended behaviour. A property of determinism (e.g. same output is 

obtained for same input), is also required. These verifications can be performed either 

by testing (called “black box testing” in [4]) either by formal demonstration.  

Our work: We explored black box testing methods, designing several test-based 

campaigns where a test is defined by a manually created ABox or a set of variations 

around theses ABox. Especially for “consistency-tasks”, “root-cause-tasks”, and “ex-

planation task” tests, we introduced erroneous axioms leading to ABox inconsistency. 

In ours campaigns, we defined an accuracy criteria as for “query task”, the percentage 

                                                           
2  https://www.project-best.eu/ 
3  http://isbi.aau.at/ontodebug/ 
4  https://ontometrics.informatik.uni-rostock.de/ontologymetrics/ 
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of right answers provided for any possible query on an A-box element; for “consistency 

tasks”, the percentage of detected inconsistency in test cases; for “root-cause tasks” 

and “explanation task”, the quantity of tests where algorithm provides the right and 

same root cause or explanation. As expected, we effectively verified that the KBS pro-

vided always the expected output and has deterministic outputs. 

Remaining challenges: Even if black-box test-based campaigns provide confidence 

elements, they do not ensure that the system would perform its intended function what-

ever the ABox e.g. operational conditions. Indeed, as test sets are manually created, we 

are not able to prove that every possible ABox was tested. For low criticality task, we 

can consider automatic test generation as proposed in [1] but – to our best knowledge 

– there is no tools to generate automatically inconsistencies in ontology. Developing 

new tools managing inconsistency would be valuable.  

For high criticality tasks, a formal demonstration approach, based on the decidability 

criteria would be preferable. Developing a tool to demonstrate decidability would be 

valuable. Furthermore, as to our best knowledge, not all description logics currently 

satisfy these criteria, proving decidability of new logics would be pertinent. 

4 An acceptable and bounded execution time 

Context: In typical SCS, outputs must be provided with a guaranteed accuracy and 

within an acceptable and bounded execution time. For KBS, this requirement translates 

into the ability to finish the reasoning task whatever the A-Box filling, within an ac-

ceptable time and without saturating the selected hardware.  

Our work: During the test-based campaigns detailed above, we launched each test 

at least 100 times to measure execution time statistics. We notice a high variability of 

the execution time for all tasks except query, sometimes leading to execution timeout 

with respect to specifications. Results are illustrated figure 1.  

 

Fig. 1. Repartition of measured execution time and required execution time (1000ms) 

Remaining challenges: The variability and the excess of execution time is currently 

not acceptable. It’s well known that OWL DL reasoners have difficulties to scale on 

large ontology, over than 1000 axioms ([11], [3]) and our ontology clearly overtakes 
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this limit. Scaling, accelerating and bounding the execution time of reasoning task 

is then a crucial point to enable the deployment of our crew assistant. We note that 

several interesting tracks are currently studied by scientific community such creating 

an optimized reasoner ([8], [9], [5]), incremental reasoning [2], parallel reasoning [7] 

or reasonner composition [10]. They will be explored in additional work. 

5 Conclusion 

In Thales, we develop a knowledge-based system (KBS) to address the needs of crew 

assistance in complex and critical situations. Even if the technology presents promising 

capacities, we are confronted to important challenges before a concrete deployment. 

Increasing the amount of confidence elements collectable during VV is the first one and 

concerns both evaluation of the knowledge base itself and the whole KBS. The second 

challenge is the reasoning acceleration to reach an acceptable and bounded execution 

time for large ontologies. We encourage the semantic web community to seize these 

challenges in the next years to enable the deployment of such systems. 

Acknowledgements: We thanks V. Charpenay, C. Rey and F. Toumani for their 

valuable comments and inspiring discussions.  
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