
Reinforcement Learning-based SPARQL Join
Ordering Optimizer

Ruben Eschauzier1[0000−0002−6475−806X], Ruben Taelman1[0000−0001−5118−256X],
Meike Morren2[0000−0001−6350−356X], and Ruben

Verborgh1[0000−0002−8596−222X]

1 IDLab, Department of Electronics and Information Systems, Ghent University –
imec

2 Marketing, School of Business and Economics, Vrije Universiteit Amsterdam
Email: ruben.eschauzier@ugent.be

Abstract. In recent years, relational databases successfully leverage re-
inforcement learning to optimize query plans. For graph databases and
RDF quad stores, such research has been limited, so there is a need to
understand the impact of reinforcement learning techniques. We explore
a reinforcement learning-based join plan optimizer that we design specif-
ically for optimizing join plans during SPARQL query planning. This
paper presents key aspects of this method and highlights open research
problems. We argue that while we can reuse aspects of relational database
optimization, SPARQL query optimization presents unique challenges
not encountered in relational databases. Nevertheless, initial benchmarks
show promising results that warrant further exploration.

Keywords: SPARQL · Join Order Optimization · Reinforcement learn-
ing · Machine Learning.

1 Introduction

Optimizing the order in which database management systems execute joins is
a well-studied topic in database literature because it heavily influences the per-
formance characteristics of queries [11]. SPARQL endpoints over consistently
evolving datasets, like Wikidata, can benefit from an algorithm that optimizes
queries based on previous experiences. Different signals exist to inform an ap-
propriate choice of join order, such as cardinalities. One such signal is previous
experiences. We use previous experiences as a predictor to produce better join
plans for future queries.
In recent literature, reinforcement learning(RL)-based optimizers that use greedy
search procedures, guided by a learned value function, achieve impressive results
in relational databases. Neo [5] shows that learned optimizers can match and
surpass state-of-the-art commercial optimizers.
In SPARQL, machine learning is primarily used to predict query performance.
These approaches [2,3,12] use supervised machine learning with a static dataset

https://www.rubensworks.net/
https://www.meikemorren.com/
https://ruben.verborgh.org/
https://ruben.verborgh.org/


of query executions. Learned query optimizers use reinforcement learning to dy-
namically generate training data, complicating the use of existing query perfor-
mance prediction methods. The April [10] optimizer uses reinforcement learning
for query optimization, with a one-hot encoded [6] feature vector denoting the
presence of RDF terms in joins. However, the paper does not report any perfor-
mance characteristics.
We fill this gap in the literature by exploring a fully-fledged RL-based query
optimizer for SPARQL join order optimization on SPARQL endpoints. End-
points query over the same dataset, likely making the previous experience signal
stronger for join order optimization. We model our approach after the RTOS [11]
optimizer for relational queries, which uses Tree-LSTM neural networks [9] to
predict the expected latency of a join plan.

2 Method

To iteratively build up an optimized join plan, the RL-based optimizer greedily
adds the join that minimizes the estimated query execution time at each iter-
ation. For the first iteration, we have the result sets of all triple patterns, and
in each subsequent iteration, we join two result sets. We estimate the execution
time of the query using a neural network, which we train to minimize the mean
squared error between predicted and actual query execution time. We feed a nu-
merical representation of the current join plan as an input to the neural network.
Join plan representation Like in the optimizer RTOS [11], we represent join
plans as a tree that we build from the bottom up. Each leaf node represents the
result set of a triple pattern, and internal nodes represent join result sets. We
represent result sets using their cardinality, the presence and location of vari-
ables, named nodes and literals, and a vector representation of the predicate.
We learn the predicate representation vectors by applying the RDF2Vec [7] al-
gorithm to the RDF graph.
RDF2Vec generates learned vector representations of RDF terms that encode in-
formation on what RDF terms co-occur often. RDF2Vec first generates random
walks on the input RDF graph, then for each random walk, it randomly removes
an RDF term and trains a neural network to predict the missing term. The
weights obtained during the model training are the feature vectors of the RDF
terms in the graph. RDF2Vec does not learn variable representations because
an RDF graph has no variables. The subject and object of triple patterns are
often variables, so we do not encode named nodes in these positions. We obtain
the representations for intermediate joins by applying an N-ary Tree-LSTM [9]
neural network on the result sets representations involved in the join. These rep-
resentations are optimized during training, thus allowing the model to determine
which features of the result sets involved in the join are important. Finally, at the
(partial) join plan root node, we apply the Child-Sum Tree-LSTM network [9]
to all unjoined result sets to obtain the numerical join plan representation.
Data efficiency & SPARQL-specific adjustments Data generation using
query execution is slow; we account for this by applying two data efficiency



techniques. First, we include a time-out set according to existing optimizers. We
effectively truncate our optimization variable while ensuring the optimal query
plan will not reach the time-out. Second, we use experience replay [4] to store
previous (expensive) query executions and reuse them for training.
Relational RL-based optimization approaches use one-hot encoding [6] of database
attributes to create feature vectors. However, large graphs like Wikidata can
contain over 100 million unique entries. One-hot encoding that many attributes
would create unwieldy vectors and degrade performance. To improve scalability,
we do not use one-hot encoding in our approach, instead, we use feature encod-
ing techniques to capture state information in fixed-size vectors.
Open Challenges We have not found a way to encode connections between
triple patterns. To encode all information in the query graph, these encodings
should reflect the possible connections between triple patterns, like object-object,
subject-subject, object-subject, and subject-object. Which makes using a sim-
ple adjacency matrix infeasible. Furthermore, our approach can only optimize
basic graph patterns; in future work, this approach should be extended to more
complex SPARQL query operations. Finally, we do not learn feature representa-
tions for variables; to enrich our triple pattern representation, we should encode
variables based on the other RDF terms in the triple pattern.

3 Initial Experiments

We implement our optimizer in the TypeScript-based Comunica query engine [8]
and compare it to the default cardinality-based optimizer. We use the WatDiv
benchmark [1] to test our method, and show the performance characteristics
of a preliminary version of the model. Table 1 shows that the model can find
better plans for 7 templates, which we believe we can improve using the data
efficiency and SPARQL-specific adjustments mentioned in Section 2. The search
time of our method is significantly longer than the standard comunica optimizer.
However, we run these benchmarks on a dataset with only about 100,000 triples.
For large RDF graphs, like Wikidata, we expect that the execution of the join
plan dominates the total query execution time.



Query Template C1 C2 C3 F1 F2 F3 F4 F5 L1

Planning (RL) 0.5028 1.000 0.277 0.214 0.347 0.160 0.800 0.278 0.027
Execution (RL) 3.116 2.577 0.583 0.100 0.090 0.062 1.906 0.059 0.006

Planning (Comunica) 0.007 0.008 0.017 0.002 0.003 0.005 0.005 0.005 0.002
Execution (Comunica) 0.076 0.001 0.490 0.001 0.005 0.008 0.012 0.194 0.032

Query Template L2 L5 S1 S2 S3 S4 S5 S6 S7

Planning (RL) 0.025 0.024 0.689 0.060 0.059 0.066 0.059 0.021 0.028
Execution (RL) 0.001 0.002 2.242 0.011 0.005 0.000 0.002 0.008 0.002

Planning (Comunica) 0.001 0.001 0.006 0.002 0.002 0.002 0.002 0.002 0.002
Execution (Comunica) 0.006 0.007 0.139 0.009 0.008 0.005 0.009 0.001 0.000

Table 1. Comparison of the query optimization and plan execution time, in seconds,
of a previous version of our optimizer and the standard Comunica [8] optimizer, with
the faster plan execution in bold.

4 Conclusion

In this paper, we explore a novel RL-based join plan optimizer for SPARQL
endpoint query execution. Initial experiments show that the model can generate
better join plans than existing cardinality-based optimizers for 7 query templates
of the WatDiv benchmark. We plan to improve the model by enhancing data
efficiency during training. We propose to use query time-outs based on existing
query optimizers to reduce the time spent executing bad query plans. Addition-
ally, we propose to use experience replay to reuse query execution information
during training. For future work, we should include information on how triple
pattern result sets connect to other result sets in the query, encode the RDF
terms present in the subject and object locations of a triple pattern, and extend
our approach to more complex SPARQL operations.

5 Acknowledgments

This work is supported by SolidLab Vlaanderen (Flemish Government, EWI
and RRF project VV023/10). Ruben Taelman is a postdoctoral fellow of the
Research Foundation – Flanders (FWO) (1274521N).

References

1. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of rdf
data management systems. In: The Semantic Web–ISWC 2014: 13th International
Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings,
Part I 13



2. Casals, D., Buil-Aranda, C., Valle, C.: Sparql query execution time prediction using
deep learning

3. Hasan, R., Gandon, F.: A machine learning approach to sparql query performance
prediction. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT)

4. Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning
and teaching

5. Marcus, R., Negi, P., Mao, H., Zhang, C., Alizadeh, M., Kraska, T., Pa-
paemmanouil, O., Tatbul, N.: Neo: A learned query optimizer. arXiv preprint
arXiv:1904.03711

6. Müller, A.C., Guido, S.: Introduction to machine learning with Python: a guide
for data scientists

7. Ristoski, P., Paulheim, H.: Rdf2vec: Rdf graph embeddings for data mining. In: The
Semantic Web–ISWC 2016: 15th International Semantic Web Conference, Kobe,
Japan, October 17–21, 2016, Proceedings, Part I 15

8. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
modular sparql query engine for the web. In: The Semantic Web–ISWC 2018: 17th
International Semantic Web Conference, Monterey, CA, USA, October 8–12, 2018,
Proceedings, Part II 17

9. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-
structured long short-term memory networks. arXiv preprint arXiv:1503.00075

10. Wang, H., Qi, Z., Zheng, L., Feng, Y., Ouyang, J., Zhang, H., Zhang, X., Shen,
Z., Liu, S.: April: An automatic graph data management system based on rein-
forcement learning. In: Proceedings of the 29th ACM International Conference on
Information & Knowledge Management

11. Yu, X., Li, G., Chai, C., Tang, N.: Reinforcement learning with tree-lstm for join
order selection. In: 2020 IEEE 36th International Conference on Data Engineering
(ICDE)

12. Zhang, W.E., Sheng, Q.Z., Qin, Y., Taylor, K., Yao, L.: Learning-based sparql
query performance modeling and prediction. world wide web


	Reinforcement Learning-based SPARQL Join Ordering Optimizer

