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Abstract. The use of Symbolic and sub-symbolic AI techniques on
Knowledge Graphs (KGs) has shown significant progress in several ap-
plications. However, many of these methods remain opaque, and the
decision-making process behind them can be perplexing. This can result
in a lack of trust and reliability in the overall framework. While various
explainable frameworks have been proposed to address these issues, do
not always provide a complete understanding and may raise privacy con-
cerns as sensitive data may be revealed during the explanation process.
In contrast, our proposed approach] leverages the semantics of KGs and
causal relationships to enhance explainability while still maintaining a
high level of trust and reliability. By focusing on XAI for link prediction
models and considering entailment regimes (e.g., rdfs:subProperty0f),
the approach can provide more comprehensive and accurate explana-
tions. Moreover, the use of symbolic reasoning allows for more transpar-
ent and interpretable explanations. The preliminary results show that
our approach is capable of exploiting the semantics of an entity in KG
and enhancing the explanations. Henceforth, more work needs to be con-
ducted, to fully comprehend all impacting factors and to identify the
most relevant explanations of the machine learning models over KGs.
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1 Introduction

Recent advances in Artificial Intelligence (AI) have already started to impact
our daily lives in terms of intelligence, and demonstrated their success in fore-
casting machine learning problems (e.g., disease diagnosis [9]). Explainability
refers to the degree to which humans can understand the decisions made by
computational frameworks. Extracting explanations is crucial, particularly be-
cause they are often obscure, and the explainability of the outcomes is partially
achieved. Explainable predictive models have rapidly become a pertinent prob-
lem [4] in data management. Various approaches [6I/I1] attempt to understand
the algorithmic decisions made by machine learning models, but they are unable
to capture the insights of the model behavior to translate them into the domain.
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KGs are data structures that encode data and knowledge together with do-
main ontologies representing real-world information, where entities like Louis
XIV and Marie Theresa are linked via directed edges denoted by binary rela-
tionships forming triples called facts, i.e., (Louis XIV, spouse, Marie Theresa).
In recent years, KGs have been built in various domains, and have led to a
broad range of applications, including Knowledge Graph Completion (KGC') [1],
or Query Processing [12]. KGC can discover new knowledge based on existing
ones and check knowledge consistency. It is an appealing research topic that is
important for completing and cleaning up KGs.

KGs represent knowledge in the form of factual statements of the form (head
entity, relation, tail entity), shortened as (ep, r, e;). In the literature about
Knowledge Graph Embeddings (KGE), these notations are used to represent the
facts in KG. KGE models, e.g., TransE, learn latent representations of entities
and relations in continuous vector spaces, called embeddings, to preserve the
KG structure. The most common learning methods for KGC' are link predic-
tions or triple classifications tasks based on a KGE model. Link Prediction (LP)
confronts the issue of incompleteness by analyzing the already known facts to de-
duce new missing facts. For example, knowing the facts (Louis XIV, hasChild,
Wessex) and (Wessex, hasMother, Marie Theresa), a LP model could predict
(Louis XIV, spouse, Marie Theresa). However, these latent vector represen-
tations of the entities and the relations are not self-explainable, and an evaluation
of the inductive abilities is still an open research issue.

Recently, the problem of explainable methods for link prediction has received at-
tention [I3UT15]. Following the taxonomy by Rossi et al. [I3] the necessary and suf-
ficient explanations can be seen as either the set of facts in absence of which the
link prediction model would not be able to yield the prediction; or a set of facts
if given to an entity would lead the model to yield that prediction. For instance,
given a tail prediction (Berlin, country, Germany), the facts about head en-
tity Berlin: (Berlin, capital, Germany), and (Berlin, located, Germany)
if removed from the training facts, leads the model to change the predicted tail.
Thus, these facts were the necessary for the model to predict the correct tail
entity, i.e., Germany with relation country. In sufficient explanation scenario,
for example, when explaining the tail prediction (Berlin, country, Germany),
identifying all the training facts about Berlin, if given to any head entity in
the training facts, can lead the model to predict their country as Germany. For
instance, adding the fact (Washington D.C., capital, Germany) to the train-
ing model is enough to yield the predicted country for Washington D.C. to be
Germany. One of the crucial tasks for embedding-based explanation is efficiently
learning and extracting explanations not only considering the data graphs, but
also the meaning of the data given an ontology. When there are more triples or
relations to consider, embedding-based reasoning is more effective.

SHACIE (the Shapes Constraint Language) is the W3C recommendation for
defining integrity constraints over knowledge graphs. To trace and enhance the
explanation for the predictive models built over data collected from KGs, our

! https://www.w3.org/TR,/2017/REC-shacl-20170720/


https://www.w3.org/TR/2017/REC-shacl-20170720/

InterpretME 3

approach InterpretMEﬂEl relies on a symbolic system, currently, this system
validates integrity constraints that provide a meaningful description of an entity
of a prediction model. The current version of InterpretME is customized for
supervised machine learning models (e.g., Decision Trees), embedding models
(e.g., TransE), and interpretable tools (e.g., LIME [I1]). In this proposal, the
approach of InterpretME is introduced to fill the gap towards the application
of LP Explainability over the KGs. The preliminary results of the research reveal
the key role of Semantic Web technologies in explainable AT and demonstrate the
importance of considering entailment regimes for the extraction of explanations.

1.1 Motivating Example

The motivation of our work originates from the lack of explainability methods
with machine learning models over KGs. Although state-of-art techniques pro-
vide automated machine-learning pipelines, they are unable to generate human-
and machine-readable decisions to assist users and enhance their efficiency. In
this proposal, explainability over the link prediction tasks is considered as an ap-
plication. This task can be subdivided into a tail prediction task, which predicts
the most plausible tail e; and a head prediction task that predicts the most plau-
sible head ey,. Fig[I]depicts a naive approach that explains a link prediction task,
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Fig. 1: Motivating Example. Explainable link prediction. a) Naive Approaches show
facts with the head entity which leads to the particular prediction of a tail entity with
hasBio. b) InterpretME depicts facts with the head entity and implicit knowledge which
lead to the tail entity with hasBio and also provides SHACL validation reports.
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i.e., (1c:2304772, lc:hasBio, ?); the expected tail to be inferred is le:PDLI.
Embedding models (e.g., TransE) for link prediction (e.g., tail prediction) are
utilized; they are executed on top of facts in data graphs.

Fig|l|illustrates the explanations based on link prediction tasks considering the
RDF graph: i) as factual statements and, ii) with the meaning of an entity (i.e.,
rdf:type, rdfs:domain, rdfs:subProperty0f). An input is collected from
an RDF KG accessible via SPARQL endpoint, that integrates data about lung
cancer patients. An RDF graph includes features describing the main charac-
teristics of a lung cancer patient, i.e., patient identifier (a.k.a. LC_ID), gender,
age, smoking habits, and lung cancer biomarkers. The predictive task is a link
prediction of a tail entity into a low dimensional latent vector space to predict
new infer facts about the patient by considering the neighborhood.
InterpretME resorts to Pykeen optimizer recommendations for hyperparame-
ter optimization in the KGE models. Further, in the naive approach, the explain-
able tool Kelpie [13] is utilized to provide local interpretations of each patient in
the training triples. Kelpie yields the relevant facts, by worsening or improving
the scores of prediction, categorizing them into two categories necessary and
sufficient. The terms necessary and sufficient are complementary to each other.
Fig.[[]depicts an exemplar entity where Kelpie determines the most plausible ex-
planations based on facts for the tail prediction task (1c¢:2304772, lc:hasBio,
1c:PDL1) and generates the necessary explanations of a particular tail prediction
are: (Lc:2304772, lc:hasSmokingHabit, lc:PreviousSmoker), (1c:2304772,
lc:age, "OLDER"). The naive approach outcomes allow for understanding the
quality of the implemented framework. Although our user would have been able
to understand the explanations generated by Kelpie, this user would need to
trace these results back to the original data attributes to discover, for instance,
whether the reported patient 1c:2304772 violates the domain integrity con-
straints or not. In contrast, Interpet ME yields the explanations of the link
prediction model based on the facts, implicit knowledge (e.g., rdfs:subClass0f,
rdfs:subProperty0f) and SHACL constraints to ensure the trustability of RDF
data and predictions are consistent with the domain constraints.

2 State of the Art

The necessity of automated machine learning frameworks with assistance has
gained tremendous popularity in various domains. Amongst the explainability
over the KGs, the works most related to ours form four main categorizations:
XAI Link Prediction, SHACL Validation, and Causal Models.

XAI Frameworks. Within the Explainable Al community, there has been a
surge of research on explainability techniques. These techniques are of two main
categories: 1) Intrinsic, and 2) Post-hoc explainability. Intrinsic explainability
refers to the machine learning models that are considered explainable due to their
simple structure, e.g., decision trees. Post-hoc explainability embodies the fully
trained black-box models, thus, trying to explain and justify the logic behind
the model outputs. The advantage of such techniques is that they are model-
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agnostic (i.e., the explanations can be generated across any models); LIME [11]
is one of the exemplary post-hoc explainable methods. LIME aims to approx-
imate any data-driven algorithm, with a local interpretable model to explain
each instance prediction. Such techniques started showing major growth in many
domains (e.g., Biomedical). However, this saliency explanations are human in-
tuition matching techniques for entities and cannot be translated into a domain
application. Our approach overcomes these limitations and provides fine-grained
explanations linked to the entities in the KGs.

Link Prediction. KGFE encodes the structure of triples in a KG, and can thus
be used to perform link predictions, i.e., inferring the missing facts. Borrego
et al. [3] propose a KGC approach using a set of neighborhood-aware features.
However, the problem of learning embeddings for KGs has gained considerable
attention, and only a few works address the explainability issues in link predic-
tion over KGs. Zhang et al. [15] introduce a method of data poisoning; given
a prediction (ep,r, e;), this data poisoning method identifies facts that, if are
removed or added to training samples, they make worse the scoring function
¢(en, 1, e¢). Rossi et al. [13] propose the Kelpie framework, which explains the
predicted links based on embedding via necessary and sufficient explanations.
Rossi et al. state that the Kelpie framework computes the subset of training
triples which can be seen as either the set of triples in addition or removal of
which the model would yield that prediction. This framework is based on the
aforementioned Post-hoc explainability. Nonetheless, these methods still lack in
considering the semantic meaning of an entity and properties in a KG. Our ap-
proach aims at explaining the predictions based on the entailment regimes.

SHACL Validation. Explainability refers to the ability to interpret, under-
stand and provide justifications for the decisions made by the machine learning
models. In the context of KGs, SHACL validations are used to justify the machine
learning model’s prediction. Hence, defining the constraints on the structure and
the data in the knowledge graph, SHACL is used to ensure that the predictions
made by the link prediction model are consistent with the constraints and can
provide justification for the predictions. The proposed approach relies on Trav-
SHACL [5], Figuera et al. describe the capability of validating the shape schema
against a SPARQL endpoint and scales better compared to other baseline ap-
proaches. Rohde et al. [I2] report the perception of incorporating the SHACL
validation result into SPARQL query answers by running the validation during
the query processing. These validation results can provide one more layer of ex-
plainability. Thus, SHACL is more evident for enabling explainable Al in the
context of KGs, provides validation, and explain the predictions.

Causal Models. A growing literature on causal models for the explainabil-
ity of black-box models emphasizes that explanation is a normative goal that
relates to real-world relationships (cause-effect) [2]. Pearl et al. [I0] describe the
essential role of the causal models via seven pillars which are beyond the reach of
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current machine learning models. In some recent work on the relational database,
Salimi et al. [I4] propose a declarative language, CARL which represents com-
plex causal models using Horn clauses and constructs a unit table specific to the
query and implements a causal model to identify the impact of treatment vari-
able. In some of the closely related work, Huang [8] proposes CareKG, a causal
query framework over the KGs to analyze the impact of treatment variables on
the outcome and defines the aggregation function for multiple treatment vari-
ables. However, these approaches describe the formalism for the causal model
but do not explain "Why this particular decision?” and also ignores the meaning
of an entity in KG. To our best knowledge, none applied causality to provide
more expressive explanations over KGs. Henceforth, one research focus of the
proposal is to connect explainability and cause-effect analysis over KGs, so that
the framework can provide more accurate explanations for its predictions and
will greatly impact the Semantic Web community.

3 Problem Statement

Consider an RDF knowledge graph KG (¢, R, G), defined as a directed edge
labeled graph such that each node e € ( represents an entity, each » € R repre-
sents a unique relation, and each directed edge (ep,r,e;) € G represents a fact
about the head entity ej,. Given a tail predictiorﬁ (en, 7, ¢ ) where ey, is the
head entity, r is the relation between entities, and (ep, r, e;) € G, the aim is
to find a set of most plausible entities e; by inferring new facts based on the
existing relations and entities in G and provides an interpretable set of facts T
= {(en, 1, e)|e € ¢} which lead the black-box model to predict new facts. Unlike
the previous method uses a fact-based approach to provide explanations. Our
approach considers entailment regimes (i.e., RDFS and OWL) over KGs and causal
relations; scalability is also one of our goals.

In contrast to baselines, the goal is to develop a framework that can be qual-
itatively and quantitatively evaluated for the explainability of machine learning
models over KGs. To this end, we evaluate our approach by answering the follow-
ing research questions: RQ1) What is the impact of integrating machine learning
frameworks with KGs to enhance explainability? RQ2) To what extent do the
extracted explanations comply with the predictions? RQ3) What is the impact
of injecting RDFS and OWL axioms in the explanations over the KGs? With
the above research questions, we aim to contribute to the Semantic Web and
AT communities and develop a generalized framework that leverages black-box
models to provide meaningful post-hoc explanations on top of the knowledge
graphs. The expected contributions of this doctoral proposal are: 1) A novel
framework to integrate machine learning methods and KG; 2) Explainability
with the exploitation of the semantics of an entity in KG; 3) Exploitation of
cause-effect relationships to empower the explanations; 4) Formalism for the
metrics to evaluate the explanations and enhance the efficiency.

4 Analogously Head prediction (?, r, e; ).



InterpretME 7
4 Research Methodology

The research methodology for this Ph.D. proposal refers to a structured, concep-
tual, analysis of the Semantic Web Technologies applied to the research problem
of explainability. The R is still an open problem, the first step focuses on
the integration of ontology and entailment regimes, i.e., RDFS and OWL. For in-
stance, extracting the explanations of tail prediction shown in Fig. [l the baseline
ignores the ontology in their approach. Considering this metadata of the entity,
we aim to enhance the explainability of a model’s prediction. The second step
involves logical reasoning over the KG, considering the most implicit facts, and
adding those facts to any other training entities would enhance the tail rank for
that particular entity. This shows the impact of implicit knowledge in explain-
ability (R. Our goal is not to limit the approach to RDFS entailment but
also to extend it to OWL entailment in the next steps of the Ph.D.

The third step aims at integrating the machine learning frameworks with KGs to
provide more insights into explainability (R. Three main components were
identified for the implementation of explainable driven frameworks over KG: col-
lecting valid data, training the model, and creating the explanations. The data
collected from the RDF graph, given to any machine learning model needs to be
valid, so our approach first implements the SHACL constraints to assure validity.
One technique would be adapting SPARQL queries over an RDF graph, to avoid
inconsistencies in the data given to the predictive model and the second tech-
nique will be reasoning via SPARQL queries to retrieve the implicit knowledge
of a particular prediction. In the end, our approach will generate a knowledge
graph comprising all the traced metadata collected during a data-driven pipeline
followed during the resolution of a prediction task.

LIME [I1I] and Kelpie [I3] can be the basis for providing feature contributions
and fact-based explanations. R still remains a complex challenge. For in-
stance, consider explainability task when integrated with KGs generates a huge
search space for selecting a particular feature or a fact which leads the model
to predict. Henceforth, the main aim of R is to provide valid scalable and
trustable explanations. To tackle R, the implementation of an algorithm that
optimally prunes the search space of valid explanations will be accomplished in
the subsequent phases of this Ph.D. proposal. The fourth step includes the ex-
ploitation of causal relationships between the entities and provides more insights
into the extraction of explanations. The last step integrates all the components
and implements a fully-fledged framework compatible with domain agnostic.

5 Evaluation Plan

The previous section outlines the benefit of integrating knowledge-driven frame-
works with explainable frameworks. Indeed R is a non-trivial research ques-
tion, it might be complicated to evaluate a framework as a complete end-to-end
task. However, the aim of R will be to integrate the symbolic system with
sub-symbolic approaches. The creation of the possible set of explanations R
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can be decomposed into two categories: SHACL validation result, then building
the possible explanation set. To evaluate the effectiveness of explanations, met-
rics like Mean Reciprocal Rank (MRR) or Hits@k will be utilized.

Indeed, for the evaluation of predictive models, i.e., supervised learning, metrics
like Accuracy, Precision, or Recall are computed. To explain predictive models,
LIME [II] would be a better option to have an idea of influential features for
a particular prediction. In the end, the aim will be to build a knowledge graph
with all the characteristics traced in the predictive task (i.e., features, predic-
tion probabilities, etc.) to enhance the explainability of the particular entity.
The techniques to evaluate the framework with axioms injection R7 would
be challenging to provide new insights. R will also attempt to define and
formalize the metrics quantifying the enhanced performance of explainability.
We aim to evaluate Interpret ME on top of the following KGs: 1) ImProVI Tﬂ
to explain the link prediction task about the impact of the immune system over
the response of Hepatitis B and Influenza vaccines; 2) CLARIF Yﬁ to define ma-
chine learning models to predict biomarkers of a lung cancer patient and generate
explanations. In these tasks, the components of InterpretME will be evaluated
and implemented to provide explainability over KG's; assist the domain experts
to have more insights into the predictive task.

6 Results So Far

We have analyzed the state of the art and the challenges to achieve explainabil-
ity in prediction models. As a first result, we have developed InterpretME, a
tool describes in a KG the outcomes and interpretations of a predictive method.
In this section, we report on our initial assessment of InterpretME in the ex-
plainability of link prediction (Fig. . The French Royalty KG [7] depicts the
information about each person in the French royal family.

LP model |Hits@1|MRR |Score|rank InterpretME| AHits@1| AMRR |Score [rank
Necessary|0.07  |-0.02 |-5.84 |1 Necessary |-0.023  |-0.02 |-7.47|3
Sufficient |0.093 |0.39 |-7.47 |3 Sufficient  ]0.10 0.0052 |-6.06(1

(a) Link Prediction(LP) model performance (b) Evalution of InterpretME explanations

Fig. 2: Initial Results. Fig. shows the evaluation of link prediction model performed
over French Royalty KG. Fig. 2H indicates the effectiveness of removing or adding
the combination of facts. The values in bold indicate the change in the metrics. For
necessary, score and tail rank are worsened, and conversely for sufficient got improved.
We report the efficacy of explanations as the difference of Hits@1 and MRR on the
particular tail prediction i.e., AHits@1 and AMRR. For necessary, more negative values
= higher efficacy and, sufficient, more positive values = higher efficacy.

® German Funded project https://www.tib.eu/en/research-development/
~ project-overview /project-summary /improvit
® EU H2020 Funded project |https://www.clarify2020.eu/
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Explainability over French Royalty KGD The link predictive task is to de-
termine whether a member of the French royalty has a spouse. For instance, let
us consider the tail prediction of a french royal member (dbo:Charles the Simple,
dbo:hasSpouse, dbo:Yes) over French Royalty KGﬂ The evaluation of the LP
model obtained respectively with TransE is reported. Here, the necessary ex-
planations are analogous to the state-of-the-art approaches with the removal of
combination facts. Sufficient explanations are given based on axioms injected,
showing how to improve the predictions by adding implicit knowledge to any
random entities in the training. Removing only the most important fact about
the dbo:Charles the Simple will likely not change the prediction because it
is still supported by other facts. Hence, InterpetME identifies the necessary
explanations, removing the combination of facts featuring ey, i.e., Charles the
Simple has child Gisela of France and has a spouse Frederuna leads to worsens
¢. The score reduced drastically to 7.47 and the tail rank from 1 to 3.
Sufficient scenario, InterpretME utilizes the implicit knowledge encoded in an
ontology of the KG using entailment regimes, i.e., subClassOf, domain, subProp-
ertyOf. For instance, using ontology about dbo:Charles the Simple, the implicit
facts obtained: (dbo:marriedTo, rdfs:subPropertyOf, dbo:spouse), and (dbo:child,
rdfs:domain,dbo:Person) added to the entities improve the score and the tail
rank change from 3 to 1. For instance, assume the fact: (dbo:Charles the Simple,
dbo:marriedTo, dbo:Eadgifu of Wessex), with the entailment regime subProper-
tyOf. As a result, we can infer: (dbo:Charles the Simple, dbo:spouse, dbo:Eadgifu
of Wessex). Since the original model was not able to infer the correct tail, their
Hits@1 and MRR are more likely to be null. The re-trained should infer the correct
predict tail, i.e., dbo:Yes. Thus, adding the implicit fact improves the prediction
of an entity. The variation observed in the Hits@1 and MRR are reported. As the
KG is limited to some instances, the neighborhood of that particular member
is less. Lastly, the SHACL validation results are used to provide one more layer
of explainability and to justify the model’s outcome. Here, SHACL constraint
explains a dbo:Person link satisfying the domain constraints about a member
having a child or spouse. For instance, the tail prediction (dbo:Charles the
Simple, dbo:hasSpouse, dbo:Yes), the head entity satisfies the constraint
having a child. The initial results are prominent to address the R and more
refined results will be achieved in the next steps of this doctoral work.

7 Conclusions and Lessons Learned

This proposal introduces and formalizes the problem of explainability which can
be particularly useful for explaining the Link Prediction model over KGs. In
state-of-art approaches, we have explored different techniques for extracting ex-
planations, including LIME and Kelpie. We found that each of these techniques
has strengths and weaknesses depending on the application domain. One area for
improvement is to prune the search space for explanations, and the techniques

" https://github.com /SDM-TIB /LinkPrediction Explanations over KGs
8 https://labs.tib.eu/sdm/InterpretME-og /sparql
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for handling the SPARQL queries and entailment regimes. The aim was to see
the impact of considering the axioms in the explainability of a Link Prediction
model. The proposal identifies the challenges for developing a framework with
exploiting semantics over the KGs to show more expressiveness in the explain-
ability. We expect that the proposed research will make contributions to the
development of a more robust explainable framework over KGs.

The next task for my Ph.D. will be to improvise the proposed approach for en-
hancing the explainability of the machine learning models over the KGs. The
future work will be about the execution of a fully fledge explainable framework,
like searching relevant entailment regimes or important characteristics of an en-
tity. Moreover, the presented research plan involves the cause-effect relations
between entities. Henceforth, future work will also be on such causal relations.

Acknowledgements I express my special thanks to my supervisor Prof. Dr.
Maria-Esther Vidal her guidance and support. This work is funded by TrustKG-
Transforming Data in Trustable Insights with grant P99/2020.
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