
RoXi: a Framework for Reactive Reasoning

Pieter Bonte[0000−0002−8931−8343] and Femke Ongenae[0000−0003−2529−5477]

Ghent University - imec, Belgium
Technologiepark-Zwijnaarde 126, B-9052 Ghent, Belgium

pieter.bonte@ugent.be

Abstract. The Stream Reasoning research paradigm aims to target ap-
plication domains that need to solve both data variety and velocity at
the same time. Many of these domains benefit from processing the data
as close to the source as possible, e.g. in Internet of Things applications
we see a paradigm shift towards Edge processing, and in the Web, we see
more and more effort towards decentralization of the Web where applica-
tions run directly inside the browser. However, current Stream Reasoning
engines are not able to reuse the same code-base to run applications in
the cloud, edge, or browser.
In this paper, we present RoXi, a Reactive Reasoning framework that
provides the needed building blocks to realize Stream Reasoning appli-
cations that can target cloud, edge, and browser environments.

Keywords: RDF Stream Processing · Edge Processing · Reasoning ·
Decentralized Web

1 Introduction

In recent years, the interest in streaming data has increased for application
domains that combine data variety, i.e. data that require some form of data in-
tegration, with the requirement to process data in a reactive fashion, i.e., as soon
as possible and before the data are no longer useful [1]. Examples of such appli-
cation domains include Smart Cities, Industry 4.0, Web Analytics, etc. Stream
Reasoning (SR) is a research initiative that combines Semantic Web with Stream
Processing technologies to target both the data variety and velocity at the same
time [8]. Semantic Reasoning allows to target the data variety, by providing
means to integrate and abstract data from various sources. Furthermore, it pro-
vides a way to interpret any defined domain knowledge.

Many of the application domains that target both data variety and velocity
can offload parts of the processing closer to where data is being produced in order
to speed up computation. In Internet of Things (IoT) applications, this means to
the Edge of the network, while in Web applications, this means to the browser
of the user. Running computation in the browser has become more popular
with the rise of the decentralized Web, as supported by the Solid project [6].
Both the Edge environment and browsers provide limited resources compared
to processing all data in the cloud. However, many of the same building blocks



2 P. Bonte et al.

should be able to run both in the cloud and at the edge/browser. This calls
for a Reasoning framework where the same code-base can be used for running
applications both in the cloud or at the edge/browser.

We introduce RoXi, a framework for Reactive Reasoning that is fully written
in Rust. RoXi allows to use the same code-base to develop applications that re-
quire Reactive Reasoning, disregardless of performing computation at the cloud,
edge or browser. RoXi can run in the browser through the support of WebAssem-
bly, at the edge through Rust’s ability to optimize code for low-level devices and
at the cloud.

2 Related Work

Various reasoners and Stream Reasoners have been proposed over the years [9],
however, typically focusing on running high-performance hardware as found in
the cloud. RDFox [4] is a highly-scalable reasoning-enabled RDF store and has
shown to be able to run at the Edge, however, it does not support any browser
run-time, nor stream processing capabilities. Fed4Edge [5] is an RDF Stream
Processing engine optimized to run in an edge environment, it focuses on query
answering on RDF data streams. However, it does not provide any reasoning
capabilities or functionality to run inside the browser. DIVIDE [2] allows to
optimize reasoning rules for the evaluation at the edge, however, it does not
support any browser run-time or optimized code for running on low-level devices.
Hylar [7] is a reasoner written in Javascript and designed to run in the browser.
However, the Javascript run-time makes it an unsuited candidate to efficiently
run at the Edge, in the cloud or efficiently handle high-velocity data streams.

3 Architecture

Fig. 1. Overview of the supported components in RoXi’s architecture

RoXi is a framework for Reactive Reasoning, providing Querying, Reason-
ing and Stream Reasoning functionality. Fig. 1 visualizes RoXi’s architecture,
consisting of the following components:

1. Querying: RoXi provides support for both SPARQL1.1 queries on static
data and RSP-QL queries on streaming data.



RoXi: a Framework for Reactive Reasoning 3

2. Reasoning: RoXi has at this point support for rule-based reasoning, with
Datalog expressivity. We support a subset of Notation3 rules1 that relate
to the expressivity of Datalog. RoXi supports both forward- and backward-
chaining reasoning algorithms. For efficient reasoning over RDF data streams,
RoXi implements the C-Sprite algorithm [1], i.e. a hybrid approach that op-
timizes the reasoning based on the registered queries.

3. RDF Stream Processing: RoXi aims to provide the same RDF Stream
Processing interfaces and functionality as RSP4J [8], which aims to unify
RDF Stream Processing. RoXi provides Time-based Windows that allow to
cut the unbounded streams in processable chunks. Different Reporting di-
mensions are supported that allow to configure when the window triggers: (a)
Content Change: reports when the content of the current window changes,
(b) Window Close: reports when the current window closes, (c) Non-empty
Content : reports when the current window is not empty, and (d) Periodic
reports periodically. Various Ticks are supported that can configure how the
evaluation of the reporting should be triggered: time-driven, tuple-driven, or
batch-driven. Once the window triggers, different components can be called,
such as Querying and Reasoning.

4. Incremental Maintenance: incremental maintenance programs allow to
keep an updated view on all inferred triples through forward-chaining. These
programs update the view when triples are added or removed. At this point,
DReD [3] and IMARS incremental maintenance programs are supported in
RoXi. The latter focus specifically on Window-based maintenance. In the
future, the more optimized Forward-Backward-Forward [3] and the naive
counting-based [3] approaches will be provided as well.

5. Storage: To reduce memory usage, RoXi employs dictionary encoding on
the consumed triples. To speed up query evaluation, RoXi supports Indexed
Datastores for all triples and rules.

6. Parsing: RoXi supports parsing of RDF, SPARQL, RSP-QL and Notation3.

RoXi is implemented in Rust and can be compiled to run at the edge, cloud
or browser. The code is available on our Github-page2. RoXi’s functionality can
be tested directly in the browser using the Web UI3.

4 Conclusion & Future Work

This paper presents RoXi, a framework for Reactive Reasoning. RoXi provides
components for querying, reasoning, incremental maintenance and RDF Stream
Processing. RoXi can be compiled to run in the cloud, edge and inside the
browser, allowing the same code-base to be used while targeting IoT, Edge and
decentralized Web applications.

In our future work, we aim to support more implementations of different
technologies for each component in RoXi’s hierarchy. For Querying, we wish to

1 https://w3c.github.io/N3/spec/
2 https://github.com/pbonte/roxi
3 https://pbonte.github.io/roxi/index.html



4 P. Bonte et al.

support SHACL and research its applicability in combination with the RDF
Stream Processing component. In terms of Reasoning, we wish to investigate
the integration of more expressive reasoning algorithms both for reasoning over
static data, e.g. to support OWL2 DL, and streaming data e.g. using temporal
reasoning such as datalogMTL. For RDF Stream Processing, we aim to support
more advanced types of windowing, such as session windows. We also aim to
formalize the connection between reasoning and RDF Stream processing while
using RoXi as a prototype. For Incremental Maintenance, we aim to integrate the
more optimized Forward-Backward-Forward [3] and the naive counting-based [3].
In terms of Storage, we wish to experiment with different indexing techniques and
their relation with streaming data, i.e. researching data structures that optimize
trade-offs between the added value of the indexes and the cost of performing the
indexing on data that changes frequently.

RoXi brings us one step closer to realize the Stream Reasoning vision by
providing a Reactive Reasoning framework that allows the same code-base to be
run in the cloud, edge or even in the browser.

Acknowledgement This work is funded by Pieter Bonte’s postdoctoral fel-
lowship of Research Foundation Flanders (FWO) (1266521N) and by SolidLab
Vlaanderen (Flemish Government, EWI, and RRF project VV023/10).

References

1. Pieter Bonte, Riccardo Tommasini, Filip De Turck, Femke Ongenae, and
Emanuele Della Valle. C-sprite: efficient hierarchical reasoning for rapid rdf stream
processing. In Proceedings of the 13th ACM International Conference on Distributed
and Event-based Systems, pages 103–114, 2019.

2. Mathias De Brouwer and et al. Context-aware & privacy-preserving homecare moni-
toring through adaptive query derivation for iot data streams with divide. Semantic
Web Journal.

3. Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. Maintenance of datalog
materialisations revisited. Artificial Intelligence, 269:76–136, 2019.

4. Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee.
Rdfox: A highly-scalable rdf store. In ISWC, pages 3–20. Springer, 2015.

5. Manh Nguyen-Duc, Anh Le-Tuan, Jean-Paul Calbimonte, Manfred Hauswirth, and
Danh Le-Phuoc. Autonomous rdf stream processing for iot edge devices. In JIST,
pages 304–319. Springer, 2020.

6. Andrei Vlad Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola Greco,
Abdurrahman Ghanem, Dmitri Zagidulin, Ashraf Aboulnaga, and Tim Berners-Lee.
Solid: a platform for decentralized social applications based on linked data. MIT
CSAIL & Qatar Computing Research Institute, Tech. Rep., 2016.

7. Mehdi Terdjimi, Lionel Médini, and Michael Mrissa. Hylar+ improving hybrid
location-agnostic reasoning with incremental rule-based update. In Proceedings of
the 25th International Conference Companion on World Wide Web, pages 259–262,
2016.

8. Riccardo Tommasini, Pieter Bonte, Femke Ongenae, and Emanuele Della Valle.
Rsp4j: An api for rdf stream processing. In ESWC, pages 565–581. Springer, 2021.

9. Riccardo Tommasini, Pieter Bonte, Fabiano Spiga, and Emanuele Della Valle. Web
Stream Processing Systems and Benchmarks, pages 109–138. Springer International
Publishing, Cham, 2023.


