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Datalog Reasoning with Trigger Graphs

1B 2B 4B 8B 17B
Runtime (s) 203 226 520 993 2272
Memory (GB) 23 34 49 98 174
#IDPs 1B 2B 5B 10B 20B

Table: Reasoning over LUBM for 1B–17B of database triples.
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Probabilistic Datalog Reasoning with Lineage Trigger Graphs
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Figure: Time in seconds for goal-driven QA over probabilistic LUBM-100.
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Reasoning (at Scale): Why
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Why: Data Management

– Industry applications [21]
– Microsoft and Google: search & QA.

– Facebook: user recommendations.

– Bosch: autonomous driving.

– Samsung: healthcare.

– LogicBlox: analytics.

– Success stories
– RDFox.

– Vadalog (acquired by Meltwater).
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Why: Machine Learning

– Build simpler models [11].
– The logical theory encodes prior knowledge– the neural model

learns a simpler concepts.

– Train with fewer or even no data, e.g., zero-shot learning [8].

– Train in a weak fashion:
– DeepProbLog [18]; Scallop [11].

– NeuroLog [25]: abduction + WMC-based loss [4].

Efthymia Tsamoura and Loizos Michael Neural-Symbolic Integration: a Compositional Perspective. In AAAI, pages
5051-5060, 2021.
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Can we Learn via Weak Supervision Coming from Logic? Yes

(Work in progress)
Theorem
If G is unambigous and any f ∈ F is r-bounded, then we have:

R01(f) ≤ O(R01
P (f ;G)1/M ) as R01

P (f ;G)→ 0

Furthermore, suppose [F ] has a finite Natarajan dimension d[F ] and the function class
{(y, s) 7→ 1{σ′(y) ̸= s}|σ′ ∈ G} has a finite VC-dimension dG . Then, for any ϵ, δ ∈ (0, 1),
there is a universal constant C4 such that with probability at least 1− δ, the empirical partial
risk minimizer with R̂01

P (f ;σ) = 0 has a classification risk R01(f) < ϵ, if

mP ≥ C4
c2M−2

rM ϵM

((
(d[F ] + dG) log(6M(d[F ] + dG)) + d[F ] log c

)
log

(
c2M−2

rM ϵM

)
+ log

(
1

δ

))
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Believe in KRR
-My neurosymbolic research
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Scene Graph Generation (AAAI 2023)

Task Logic-Based Regularization

Davide Buffelli, and Efthymia Tsamoura. Scalable Theory-Driven Regularization of Scene Graph Generation Models. In
AAAI, 2023.
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Scene Graph Generation (AAAI 2023)
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Figure: Comparison against BGNN [16], KBFN [10] and VCTree [22]. Benchmark: Visual
Genome [13].
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Scene Graph Generation (AAAI 2023)

Figure: Recall of VCTree [22] on the 28 least frequent predicates: without NGP; with NGP.
Benchmark: Visual Genome [13].
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Knowledge Distillation into Deep Networks (ICML 2023)

Concordia
– First to support general first-order theories.

– Supports semi-/un-/supervised learning.

Operation Equation

Inference ŷ = argmaxy PN (Y = y|X = x,θ)

Training θ̂t+1 = argminθ(ℓ(ŷN ,y) +KL(PN , PL))

λ̂t+1 = argmaxλ
∏

(x)∈D
PL(X = x,λt)

Leon Jonathan Feldstein, Jurčius Modestas and Efthymia Tsamoura. Parallel neurosymbolic integration with Concordia. In
ICML (to appear), 2023.
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Video Activity Detection (ICML 2023)
SEQ(B1, B2) ∧ CLOSE(B1, B2)→ SAME(B1, B2)

DOING(B1, A) ∧ SAME(B1, B2)→ DOING(B2, A)

Accuracy over 5 runs
Model Avg (%) Max (%) Min (%)
ACD+L [17] 86.00 - -
MobileNet 90.07 91.36 89.61
IARG(MobileNet) [14] 90.18 92.39 87.55
Concordia(MobileNet, L) 90.73 93.19 89.54
Inception 89.72 91.83 86.84
IARG(Inception) [14] 88.88 91.67 85.33
Concordia(Inception, L) 92.75 93.34 92.31

Leon Jonathan Feldstein, Jurčius Modestas and Efthymia Tsamoura. Parallel neurosymbolic integration with Concordia. In
ICML (to appear), 2023.
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Entity Linking (ICML 2023)

Table: Results on entity linking.

Model F1 Acc (%)

BERT (sp) 0.88 88.5
Concordia(BERT) (sm) 0.91 91.4

Leon Jonathan Feldstein, Jurčius Modestas and Efthymia Tsamoura. Parallel neurosymbolic integration with Concordia. In
ICML, 2023 (to appear).
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Visual QA (SIGMOD 2023)

Q(O)← NAME(herbivore,O)

NAME(N,O) ∧ NAME(N ′, O)→ ISA(N ′, N)

→ ISA(giraffe, herbivore)
→ ISA(dear, herbivore)

Table: Recall@5 on VQAR [11].

Testset LXMERT [24] RVC [7] TG-Guided VQA
C5 64.05% 74.62% 87.01%
C6 56.51% 72.04% 85.45%

Efthymia Tsamoura, Jaehun Lee, and Jacopo Urbani. Probabilistic Reasoning as Scale: Trigger Graphs to the Rescue. In
SIGMOD, 2023 (to appear).
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How this Reasoning
Journey Started
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Benchmarking the Chase (PODS 2017)

– Tasks
– Materialization.
– Query answering.

– (Some) Engines
– RDFox [20].
– DLV [15].
– E [23].
– Graal [1].
– Pegasus [19].

Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik, Paolo Papotti, Donatello Santoro, and Efthymia
Tsamoura. Benchmarking the Chase. In PODS, pages 37–52, 2017.
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Benchmarking the Chase (PODS 2017)

– Paper takeaways
– Equality is challening.
– Dictionary encoding

played a role.
– Chase engines could

support “realistic”
scenarios.

– Practitioners’ takeaways

– Chase engines were
struggling with ∼100M
facts and few hundreds
of rules.

– LUBM-1k was only
supported by one
engine running on
multiple cores.

Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik, Paolo Papotti, Donatello Santoro, and Efthymia
Tsamoura. Benchmarking the Chase. In PODS, pages 37–52, 2017.
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How this Journey Started (cont’): ProbLog

– Why ProbLog [6]
– Support Web-crawled

KBs.
– Reasoning over deep

neural classifiers.
– Clean semantics.

– State of affairs
– Limited applicability.
– Could not support

LUBM-1.

– Contribution
– Datalog techniques +

provenance semirings.
– Improved scalability by

100x.

Efthymia Tsamoura, Victor Gutierrez-Basulto, and Angelika Kimmig. Beyond the Grounding Bottleneck: Datalog Techniques
for Inference in Probabilistic Logic Programs. In AAAI, pages 10284-10291, 2020.
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Reasoning at Scale: How
-Trigger Graphs

Efthymia Tsamoura, David Carral, Enrico Malizia, and Jacopo Urbani. Materializing Knowledge Bases via Trigger Graphs. In
VLDB, pages 943-951, 2021.
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Trigger Graphs: Why

– Key to support goal-driven QA over transitive rules.

– Standard bottom-up evaluation:
– may derive logically redundant facts;
– may try to execute rules that derive no facts.

– The above negatively impact the runtime and the memory.
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How: Trigger Graphs

Rules

r(X, Y )→ R(X, Y ) (r1)
R(X, Y )→ T (Y,X, Y ) (r2)

T (Y,X, Y )→ R(X, Y ) (r3)
r(X, Y )→ ∃Z.T (Y,X,Z) (r4)

Facts

→ r(c1, c2)

Bottom-Up evaluation
r(c1, c2)

T (c2, c1, n1) R(c1, c2)

T (c2, c1, c2)

R(c1, c2)

∅

(r4) (r1)

(r2)

(r3)

(r3)
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How: Trigger Graphs

Rules

r(X, Y )→ R(X, Y ) (r1)
R(X, Y )→ T (Y,X, Y ) (r2)

T (Y,X, Y )→ R(X, Y ) (r3)
r(X, Y )→ ∃Z.T (Y,X,Z) (r4)

Facts

→ r(c1, c2)

Bottom-Up evaluation
r(X1, X2)

T (X2, X1, Z) R(X1, X2)

T (X2, X1, X2)

R(X1, X2)

∅

(r4) (r1)

(r2)

(r3)

(r3)
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How: Trigger Graphs

Rules

r(X, Y )→ R(X, Y ) (r1)
R(X, Y )→ T (Y,X, Y ) (r2)

T (Y,X, Y )→ R(X, Y ) (r3)
r(X, Y )→ ∃Z.T (Y,X,Z) (r4)

Facts

→ r(c1, c2)

Trigger graph

r1

r2

1
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Trigger graph-based reasoning

TGs delineate the rule executions
– Execute r1 over the input instance.

– Execute r2 over the derivations of r1.

– No other operation is taking place.
Important to node

– Facts are stored inside the nodes, i.e.,
not stored in a single set like in all
bottom-up engines.

– This data separation makes joins run
faster.

Trigger graph

r1

r2

1
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Trigger graph-based reasoning

Rules

r(X, Y )→ A(X) (r1)
r(X, Y )→ A(Y ) (r2)

A(X) ∧ s(X,Z)→ T (Z) (r3)

r1 r2

r3 r3

A(1) A(2)

T (a) T (b)

r(1, 2) s(1, a) s(1, b)
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Trigger Graphs for Linear Rules

– Phase I: Static TG Computation.
– Compute a representative instance B∗, i.e., one that captures all

possible rule execution paths.
– Compute a plan G that mimics the rule execution when reasoning

over B∗.

– Phase II: Redundancy Elimination.
– Eliminate nodes that lead to redundanct facts (via detecting

preserving homomorphisms).

– Phase III: Reasoning.
– The computed TG can be used to reason over all input instances.
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Trigger Graphs for Linear Rules: Complexity

Let P be a linear program that admits a finite universal model.

Theorem (Complexity)

Computing a TG for P is double exponential in P . If the arity of the predicates in P is
bounded, the computation time is (single) exponential.
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Reasoning over Linear Rules

Total materialization times in s
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Trigger Graphs for Datalog Rules

TGs for Linear Rules
– Static TG computation.

– Use the pre-computed
TG to reason over all
instances.

– Redundancy elimination
via detecting preserving
homomorphisms.

TGs for Datalog Rules
– Interleave TG creation

with reasoning.

– The computed TG can be
used to reason over the
given instance only.

– Redundancy elimination
via query containment [3].
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Trigger Graphs for Datalog Rules: Example

Rules

r(X,Y )→ S(X,Y,X) (1)
a(X) ∧ r(X,Y )→ S(X,X, Y ) (2)

S(X,Y, Z)→ A(X) (3)

r1 r2

r3 r3

S(1, 2, 1) S(1, 1, 2)

A(1) A(1)

r(1, 2) a(1)
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Trigger Graphs for Datalog Rules: Example

r1 r2

r3 r3

Trigger Graph

v3 v4

Query for v3 Query for v4

Q(X) = ∃Y.r(X, Y ) Q′(X) = ∃Y.a(X) ∧ r(X, Y )

r(X, Y )→ S(X, Y,X) a(X) ∧ r(X, Y )→ S(X,X, Y )

S(X, Y, Z)→ A(X) S(X, Y, Z)→ A(X)

r1

r3

r2

r3
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Trigger Graphs for Datalog Rules: Results

Let P be a Datalog program.

Theorem (Soundness)

For a TG G for P , minDatalog(G) is a TG for P .

Theorem (Minimality)

Any TG for P has at least as many nodes as minDatalog(G).

Theorem (Complexity)

Deciding whether G is a TG of minimum size for P is co-NP-complete.
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More: TG-Aware Rule Execution Strategy
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Datalog Reasoning with Trigger Graphs

Materialization times in s
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Datalog Reasoning with Trigger Graphs

Materialization times in minutes
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Reasoning at Scale: How
-Lineage Trigger Graphs

Efthymia Tsamoura, Jaehun Lee, and Jacopo Urbani. Probabilistic Reasoning as Scale: Trigger Graphs to the Rescue. In
SIGMOD, 2023 (to appear).
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Aim

– Develop highly-scalable reasoning techniques that support uncertainty.

– Adopt well-established semantics.
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Key Challenge: Complexity

Rules

e(X, Y )→ p(X, Y )

p(X,Z) ∧ p(Z, Y )→ p(X, Y )

Facts

→ e(a, b) → e(a, c)

→ e(b, c) → e(c, b)

Derivations

e(a, b) e(b, c) e(a, c) e(c, b)

p(a, b)τ1 p(b, c)τ2 p(a, c)τ3 p(c, b)τ4

p(a, c)τ5 p(b, b)τ6 p(a, b)τ7
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Prior Art: Key Limitations

– Relies on provenance semirings [9], i.e., associates a Boolean formula
to each derivation.
– Super-polynomial size blowup in data complexity: any monotone

formula to test connectivity in a graph with n nodes has size nΩ(logn)

(lower bound holds even for undirected graphs) [12].

– Requires Boolean checks at each reasoning step for termination.
– Runtime bottleneck.

Efthymia Tsamoura, Victor Gutierrez-Basulto, and Angelika Kimmig. Beyond the Grounding Bottleneck: Datalog Techniques
for Inference in Probabilistic Logic Programs. In AAAI, pages 10284-10291, 2020.
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Probabilistic Reasoning via Provenance Semirings

R Derivation@R Comparison Formula@R

1 e(a, b) ∅ e(a, b)

2 e(a, c) ∧ e(c, b) e(a, c) ∧ e(c, b)
?≡ e(a, b) e(a, c) ∧ e(c, b) ∨ e(a, b)

e(a, b) e(b, c) e(a, c) e(c, b)

p(a, b)τ1 p(b, c)τ2 p(a, c)τ3 p(c, b)τ4

p(a, c)τ5 p(b, b)τ6 p(a, b)τ7
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Lineage Trigger Graphs

– Efficient maintenance of
derivation history.
– Natural for TGs.
– Storing pointer offsets.

– Reduces termination checks for
detecting cyclic derivations!
– No Boolean checks are

required!

Derivations

e(a, b) e(b, c) e(a, c) e(c, b)

p(a, b)τ1 p(b, c)τ2 p(a, c)τ3 p(c, b)τ4

p(a, c)τ5 p(b, b)τ6 p(a, b)τ7
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Lineage Trigger Graphs: (Adaptive) Provenance Circuits

– Extended the notion of provenance circuits [5] to allow a more
space-efficient reasoning:
– Polynomial size representation.
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Probabilistic Datalog Reasoning with Trigger Graphs

Q1 Q2 Q3 Q4 Q5

1

10

100

1K

Scallop(1) Scallop(20) Scallop(30) LTGs

Figure: Time in seconds for goal-driven QA over sample queries from VQAR [11].
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Conclusions++
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Cool Research not Covered: Goal-driven QA over existential
rules with equality (AAAI 2018)
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Figure: Time in msec to answer the ChaseBench queries [2].

Michael Benedikt, Boris Motik, and Efthymia Tsamoura. Goal-Driven Query Answering over Existential Rules with Equality.
In AAAI, pages 1761–1770, 2018.
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Cool Research not Covered: PRISM (AAAI 2023)

– Objective: mining rule patterns under (ϵ,α)-guarantees:
– ϵ controls the uncertainty in the entity similarity measure;
– α controls the softness of the resulting rules.

– Runtime optimality for given ϵ.

– O(n log n) vs. O(n3) (in the size of the entities in the data) algorithm for
clustering structurally-related data.

– PRISM outperforms SOTA by up to 6% in accuracy and up to 80% in
runtime.

Leon Jonathan Feldstein, Dominic Phillips and Efthymia Tsamoura. Principled and Efficient Motif Finding for Structure
Learning of Lifted Graphical Models. In AAAI, 2023.
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Keywords (instead of conclusions)

– Uncertainty– many proposals, what is the right semantics?

– Formal guarantees.

June 1, 2023 ESWC’2023 49



Thanks!
Contact info: efi.tsamoura@samsung.com.
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