
Refining Large Integrated Identity Graphs using
the Unique Name Assumption

Shuai Wang1 �[0000−0002−1261−9930], Joe Raad2[0000−0002−7891−7738], Peter
Bloem1[0000−0002−0189−5817], and Frank van Harmelen1[0000−0002−7913−0048]

1 Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
{shuai.wang | p.bloem | frank.van.harmelen}@vu.nl

2 LISN, University of Paris-Saclay, Orsay, France
joe.raad@lisn.fr

Abstract. The Unique Name Assumption (UNA) supposes that two
terms with distinct identifiers from the same knowledge base do not refer
to the same real-world entity. The UNA can be used to detect errors in
large integrated knowledge bases. For example, some identity link can
be erroneous if they are in a path that connects two entities (that refer
to different real-world objects) defined in the same knowledge base. For
large knowledge bases, however, the UNA does not always hold due to
redundant IRIs that capture various encodings, languages, namespaces,
versions, letter cases, etc. The UNA can still be useful for identifying
erroneous links provided good adaption to the exceptions. For this, we
propose a concrete definition of the UNA with tolerance towards multiple
exceptions, namely the internal UNA (iUNA). To compare the iUNA
and other variants of the UNA, we propose a generic algorithm that can
be used for refinement. The algorithm employs an SMT (Satisfiability
Modulo Theory) solver and takes advantage of the latter’s ability to
efficiently reason over equality. For evaluation, we identify erroneous links
in an identity graph of half a billion triples extracted from the LOD
Cloud, and compare our approach against community detection methods
(Louvain and Leiden) as well as other identity refinement approaches.

1 Introduction

The question “What is an entity?” and the related question “When are two
entities equal?” are not only longstanding philosophical questions3 but are also
longstanding technical issues in information systems [7]. The Semantic Web, and
in its wake, Linked Open Data, have operationalised the notion of an “entity” as
an Internationalized Resource Identifier (IRI): each is represented as an IRI, and
using the same IRI implies referring to the same entity. Entities are connected
by the identity links (e.g. owl:sameAs) to form identity graphs. Many existing
approaches for detecting errors in identity graphs require information such as
vocabulary alignments, textual descriptions [17, 8] or the presence of a large
number of ontology axioms and alignment of the vocabularies [11, 14]. However,

3 https://plato.stanford.edu/entries/object/

2 S. Wang et al.

such information is often restricted to certain languages or simply not always
available [17, 8], thus not appropriate for refinement tasks at web scale. Identity
graphs on the web exhibit special properties which must be considered: they are
integrated from multiple sources, sources can be multilingual, many suffer from
a lack of maintenance and some have multiple encoding schemes.

Since owl:sameAs is a symmetric relation, we reduce the directed graph to
a simple, undirected graph. In an undirected graph G, a Connected Component
(CC) is a maximal subgraph with any two vertices connected by a path (Fig-
ure 1a). A gold standard is the ground truth that maps each node (IRI) to the
real-world entity, which can be used for evaluation (Figure 1b). An equivalence
class (EC) is a set of vertices corresponding to the same real-world entity (may
or may not be connected by a path). In an identity graph, a CC is an EC if and
only if all its nodes refer to the same real-world entity4.

(a) An example CC with 633 nodes (b) Its gold standard without erroneous
edges (yellow nodes are those labeled ‘un-
known’)

(c) A solution by the Louvain method
(resolution = 0.01)

(d) A solution by the Louvain method
(resolution = 1.0)

(e) A solution by the Leiden method (f) A solution by our algorithm

Fig. 1: An example of a connected component (No. 4170), its gold standard, and
solutions by the Louvain algorithm, the Leiden algorithm, and our algorithm.

4 However, when constructing the gold standard by annotating IRIs extracted from
the Web, some may be annotated ‘unknown’ if the subject cannot be established.

Refining Large Identity Graphs using the Unique Name Assumption 3

The Unique Name Assumption (UNA) supposes that two terms with distinct
IRIs do not refer to the same real-world entity. Although the UNA does not al-
ways hold due to redundant IRIs that capture various encodings, languages,
namespaces, versions, letter cases, the UNA can still be useful for identifying
erroneous links. We design a refinement algorithm that removes a minimal num-
ber of edges with good precision (Figure 1f). We compare the results against the
Louvain algorithm (Figure 1c and 1d) and the Leiden algorithm (Figure 1e).

This paper focuses on four research questions:

RQ1 How can we define a UNA for large integrated knowledge graphs?
RQ2 How do we validate various definitions of the UNA?
RQ3 Can the UNA give a reliable indication of errors in practise?
RQ4 Can we develop an efficient UNA-based algorithm for refinement?

We present existing definitions of the UNA and related work in Section 2.
In Section 3, we propose a new definition of the UNA and we test the different
UNA definitions and examine their reliability for error detection in Section 4,
by validating them over data of the LOD cloud. In Section 5, we present our
refinement algorithm and we evaluate it in Section 6. Finally, discussion and
future work are presented in Section 7. Our main contributions5 are as follows:

1. We propose a new definition of the UNA, namely the iUNA and check it
against a large integrated knowledge graph together with other definitions.

2. We design an inconsistency-based refinement algorithm that evaluates defi-
nitions of the UNA by employing an SMT solver.

3. We publish a gold standard of over 8K manually annotated entities (200K
owl:sameAs links) together with some additional information such as redi-
rection and equivalence under different encoding schemes.

4. We introduce new evaluation metrics and provide a benchmark using our
gold standard and algorithm.

2 Related Work

Estimates of the proportion of erroneous identity links in the semantic web
range from around 3% [11, 15] to 20% [10]. Existing approaches for detecting
errors in identity graphs fall into three categories[17]. Content-based approaches
exploit the descriptions associated with each resource for evaluating the correct-
ness of an identity link. They typically rely on additional information such as
vocabulary alignments and textual descriptions for each entity. However, such
information is not always available [17, 8] on open Web datasets, and in practice,
such algorithms often do not scale to the size of the LOD Cloud. The network-
based approaches [9, 16] take advantage of graph-theoretical algorithms for the
detection of erroneous links. For instance, [16] rely on the Louvain community
detection algorithm for assigning an error degree for each identity link. This error

5 The data is published on Zenodo (https://zenodo.org/record/7765113) with DOI
10.5281/zenodo.7765113.

4 S. Wang et al.

ex:Holland%2C Texas

ex:Holland, Texas ex:Holland

ex:Netherlands

ex-fr:Pays-Bas

ex-nl:Nederland

Fig. 2: An example CC with links expressing identity (black), redirection (red),
and encoding equivalence (blue) (see also Section 3).

degree is based on the density of the community in which an identity link occurs
in, and the weight of the owl:sameAs (i.e. reciprocally asserted owl:sameAs have
a lower error degree, hence a higher chance of correctness). These error degrees
are published online as part of the MetaLink dataset [3]. However, the accuracy
of these methods is limited due to a lack of understanding of the underlying
semantics. Finally, the inconsistency-based approaches [11, 14] hypothesise that
owl:sameAs links that lead to logical inconsistencies have a higher chance of be-
ing incorrect. They typically require the presence of a large number of ontology
axioms and alignment of the vocabularies.

The use of the UNA to detect errors in identity graphs is an inconsistency-
based approach. This idea has been explored in [12, 19]. Despite that UNA
is a well-defined definition in relational database theory (a.k.a. Unique Name
Axiom) [18], the lack of an agreed-upon definition of UNA in semantic web
leads to different conclusions. The primitive adaption of UNA in semantic web
postulates that any two ground terms with distinct names are non-identical [12].
In the scope of integrated knowledge graphs, Valdestilhas et al. [19] formalise
this as any two URIs in the same knowledge base cannot refer to the same thing
in the real world. We name this definition naive UNA, or nUNA for short. In
practice, an integrated knowledge graph violates the nUNA if at least one of its
connected components (from the identity graph) has two entities from the same
source.

Figure 2 is a fictional example of six entities from two knowledge bases (cor-
responding to nodes in light grey and dark grey, respectively). The six entities
connected by the black edges form a connected component. The two equiva-
lence classes are about the Netherlands (the three nodes on the right), and a
city in Texas named Holland (the two nodes on the left). The node ex:Holland
can be confusing (could be annotated as “unknown”). The blue arrow is an ex-
ample how encoding schemes can lead to redundancy. Due to transitivity, the
mistake between ex:Holland, Texas, ex:Holland and ex-fr:Pays-Bas was
carried over to other entities such as ex-nl:Nederland. This example shows
how entities in various languages can be confusing. This connected component
violates the nUNA: for the knowledge base of light grey, there are three enti-
ties in the connected components. This helps the detection of spurious links.
Note that removing the links between ex:Holland, Texas and ex:Holland and
ex-fr:Pays-Bas results in three connected components, which are correct but
still violate the nUNA.

Refining Large Identity Graphs using the Unique Name Assumption 5

De Melo [12] points out that the Semantic Web is very different from tra-
ditional closed scenarios because multiple parties can publish data about the
same entity using different identifiers. Thus, they propose to use a quasi-unique
name constraint (quasi UNA, or qUNA) for entities: they use the namespace
of an IRI as its source of provenance, with a focus on 6 major hubs including
DBLP, DBpedia, FreeBase, GeoNames, MusicBrainz, and UniProt. This defi-
nition also takes into account some exceptions: two DBpedia entities from the
same dataset/source do not violate the UNA if one redirects to the other, or
either is a dead node (those that can no longer be resolved).

These definitions have several drawbacks in practice. First, both the nUNA
and the qUNA lack a clear definition of provenance, i.e. the source of enti-
ties. The algorithm using the nUNA relies on LinkLion6 for computing the
provenance of entities [19]. That of the qUNA takes an entities’ namespace as
the source by default. As for DBpedia, the paper studied only the namespace
http://dbpedia.org/resource/ for violation and redirection. The algorithm
developed based on nUNA outputs only partitions of the identity graph rather
than the edges to remove [19]. Despite that the paper proposed to handle cases
of DBpedia with exception, qUNA is restricted to awareness of redirect within
DBpedia [12]. In fact, recent work estimates that between 45% and 83% of redi-
rection links can be taken as identity link7 [13]. Furthermore, the work in [12]
does not specify how redirection and dead nodes were obtained. In addition, we
believe that there are other forms of exceptions that must be considered. For
example, the IRIs wikidata.dbpedia.org/resource/Q6453410, www.wikidata.org/
entity/Q6453410 and wikidata.org/entity/Q6453410 are about the same entity
but in different versions of Wikidata. Despite issues with the definition, the re-
finement algorithm using these two UNA definitions takes violations as hard
constraints: entities are considered different as long as the UNA is violated. Due
to the lack of a gold standard, neither definition was validated on real-world
data, or compared with other existing baselines. In this work, we propose a new
definition of the UNA that is suited for large integrated graphs on the Web and
compare it with the existing UNA variations previously proposed by [12, 19].

3 The iUNA

When examining the data in the LOD Cloud, we note that identity links are of-
ten used to connect the same entity in different language, versions or encodings.
Therefore, we propose our own definition of the UNA, which we call the internal
UNA (iUNA), to take these differences into account. Our iUNA definition as-
sumes that two different IRIs e1 and e2 within the same namespace should refer
to distinct real-world entities only when: a) they are in the same knowledge base
according to a certain provenance information, b) they don’t satisfy any of the
following exceptions:8

6 LinkLion (https://www.linklion.org/) is no longer available.
7 The uncertainty is due to the presence of a large number of ’unknown’ entities
8 These exceptions are based on our manual examination of the entities in the linksets.

6 S. Wang et al.

nUNA qUNA iUNA
Definition Two URIs in the

same KB cannot
refer to the same
thing

Refinement of nUNA,
considering exceptions
of DBpedia

Refinement of nUNA by considering
multiple exceptions and provenance
estimations

Provenance Rely on LinkLion Namespace (in 6 major
hubs)

Three means of provenance

Exceptions None Redir. between some
DBpedia entities

Encoding variants, redirection, dead
nodes

Algorithm
(see
sections
below)

Violation as hard
constraint; returns
partitions that are
contradiction free

Violation as hard
constraint; remove links
that violate qUNA

Violations as hard and soft
constraints; remove fewer identity
links

Limitations
(see
sections
below)

No tolerance
towards exceptions;
relies on an
external server for
provenance

Not enough exceptions
taken into
consideration; restricted
definition of provenance;
violations taken as hard
constraints

Not every exception is included or
handled explicitly. Can be relaxed
by taking violations as soft
constraints.

Table 1: Comparing the definition of the UNA

1. if e1 can be percent encoded/decoded into e2 by one or more steps,9

2. if e1 redirects to e2 (or vice versa), or both redirect to the same location,
3. if at least one of e1 and e2 is a dead node, not found, unresolvable, redirects

until reaching some error or has a timeout error while resolving.

To check whether two entities violate the iUNA, condition (a) requires us
to check whether they are from the same knowledge base. This requires some
form of provenance to determine where an entity is defined. The nUNA relies
on the provenance information of LinkLion, which consists of multiple linksets.
It is questionable if linksets can in fact be taken as the knowledge base where
the entities are defined, not to mention that LinkLion is no longer available. As
for the qUNA, it takes the namespace of an entity to define its knowledge base
(regardless of the actual knowledge bases where the corresponding identity links
are). This can be problematic for popular namespaces: an entity in DBpedia can
be defined in one knowledge base but used in other knowledge bases. Authors
can specify where an entity is defined using rdfs:isDefinedBy, but an ad-
hoc examination shows that this information is rare. We therefore propose two
additional means for the estimation of provenance of an entity e. Table 1 provides
a comparison of the three UNA definitions.

Explicit sources: an explicit source of e is the object in any triple with subject
e and predicate rdfs:isDefinedBy (or any equivalent or sub-properties).

Implicit label-like sources: an implicit label-like source of e is the RDF file
containing triples where e is the subject and rdfs:label (or any of its
equivalent or sub-properties) is the predicate.

Implicit comment-like sources: an implicit comment-like source of e is the
RDF file containing triples where e is the subject and rdfs:comment (or any
of its equivalent or sub-properties) is the predicate.

9 For example, ex:Bandon (Oreg%C3%B3n) and ex:Bandon (Oregón) can be equivalent.

Refining Large Identity Graphs using the Unique Name Assumption 7

Fig. 3: Size distribution of the equivalence classes in the gold standard.

4 Testing the UNA

4.1 Dataset & Gold standard

We use the http://sameas.cc dataset [4], which provides the transitive closure
of 558 million distinct owl:sameAs statements. These identity statements were
extracted from the 2015 LOD Laundromat crawl [2] that provides more than
38 billion triples from over 650K RDF files. The identity links are distributed
over 49 million connected components (CCs), with each CC being associated
with a unique ID. We manually annotated all IRIs from 28 CCs with fewer than
1K nodes each. Our gold standard consists of 8,394 manually annotated entities
covering a total of 232,311 owl:sameAs links. There are 987 entities (11.75%)
annotated as ‘unknown’. A total of 209,160 edges (90.02%) are between nodes
with the same annotation while 3,678 edges (1.58%) link entities with different
manual annotations. The remaining edges involve at least one node annotated as
‘unknown’. Based on this manual examination, we estimate the error rate to be
between 1.58% and 9.98%. We divide our gold standard randomly into two parts
of 14 files each for training and evaluation respectively. To better understand the
gold standard, we show their size ECs and their distribution in Figure 3. The
plot shows that redundancy is common in the LOD cloud. The majority of ECs
contain fewer than 200 nodes, while there could be as many as 358 identifiers
referring to the same real-world entity at the right end of the spectrum. This
gives a reference for the setting of parameters in our algorithms in Section 5.

4.2 Validating the UNA

Using the gold standard, we validate our definitions (RQ2). For this, we use the
sources of entities in our gold standard retrieved also from LOD Laundromat.
Our examination shows that only 0.71% of the entities have an explicit source.
In contrast, 61.97% of the entities have at least one implicit label-like source and
40.71% have a comment-like source. This indicates that explicit sources are too
rare and thus we only use two variants of iUNA in this work: iUNA-label and
iUNA-comment corresponding to label-like sources and comment-like sources
respectively.

8 S. Wang et al.

nUNA qUNA iUNA

one unique entity
label-like 1,351 (77.78%)

204 (59.48%)
1,566 (90.15%)

comment-like 519 (68.56%) 670 (88.51%)

up to two entities
label-like 250 (14.40%)

69 (20.11%)
119 (6.85%)

comment-like 153 (20.21%) 57 (7.53%)

more than two entities
label-like 136 (7.82%)

70 (20.41%)
52 (2.99%)

comment-like 85 (11.23%) 30 (3.96%)

Table 2: Analysis of sources of the gold standard that follow the UNA

For each source, we analyze the number of entities in each EC. Although the
original work that examines qUNA was restricted to only 6 major hubs’ names-
pace as provenance, it can be easily adapted to any namespace. Thus, we gener-
alize its definition of provenance in the experiments below. Considering that the
nUNA lacks a proper definition of provenance, we use the label-/comment-like
source defined for iUNA for the sake of comparison. Table 2 provides the propor-
tion of sources with the number of entities in each implicit label-/comment-like
source in the equivalence classes. A source follows the UNA if there is only one
unique entity in the EC. An estimate of 1,351 out of 1,737 label-like sources
follows the nUNA. On the other hand, 14.40% of the sources violate the nUNA
by having two entities in at least one equivalence class in the gold standard, and
an additional 7.82% of the sources violate the nUNA by having more than two
entities. Table 2 shows that the iUNA is better than the nUNA and the qUNA in
terms of capturing how the community is implementing the UNA in their knowl-
edge bases. This also shows that taking encoding equivalence and redirection can
indeed align the UNA with its use in practice. Thus, the algorithm should not
remove all edges that violate the UNA when refining the identity graphs.

4.3 Detecting Errors Using UNA

In this section, we focus on RQ3: can the UNA give a reliable indication of
identity errors in practice? Our analysis shows that the errors can be classified
as two types. The first type are erroneous edges between entities that refer
to two real-world entities. The others are edges involving nodes annotated as
‘unknown’. Thus, we provide upper and lower bound of error rate depending
on how these edges are treated. First, we study how two random entities in a
connected component are identical. For this, in each connected component G
in the gold standard, we sample |V | (i.e. the number of nodes) different pairs
of entities at random. The estimated error (proportion of non-identical pairs) is
between 47.0% and 68.1%, depending on the interpretation of the nodes labeled
“unknown” in the gold standard. We use this as our baseline for the analysis
below (see the first row of Table 3).

For these same sampled pairs, we test the error rate and the UNA violation
percentage for the three UNA definitions. The second row in Table 3 shows that
when using label-like sources, 61.9% of the sampled pairs violate the nUNA, the

Refining Large Identity Graphs using the Unique Name Assumption 9

Violation (%) Lower bound (%) Upper bound(%)

random - 47.0 68.1

nUNA
label 61.9 33.4 49.8

comment 42.5 32.6 46.2

iUNA
label 0.3 8.5 75.9

comment 0.1 11.7 35.0

qUNA 1.4 16.1 61.3

Table 3: Percentage of pairs violating different definitions of the UNA with the
lower/upper bound of their error rates using different sources

estimated error is between 33.4% and 49.8%. In contrast, only 0.3% sampled
pairs violates iUNA, with an error rate between 8.5% and 75.9%. Recall that
11.75% nodes were annotated “unknown”. This analysis also indicates that such
nodes are heavily involved in pairs violating the UNA. More pairs violate the
UNA when using label-like sources than when using comment-like sources. In all
cases, the lower bounds of error reduce when compared against that of randomly
sampled pairs. Using iUNA with comment-like sources reaches the lowest error
rate for the lower bound. These selected pairs are then used in the algorithm to
identify erroneous edges in the paths that connect them.

Next, we study the impact of redirection. There are in total 13,922 nodes
in the graphs that capture redirect relations10. We find that 3,072 out of 8,394
entities were redirected. Among them, 5,528 correspond to new IRIs that are in
the extended graph but not in the original graphs. There are in total 6,991 edges
in the redirect graphs. Among them, 546 are between entities in the original
graph with 504 correct ones and 8 erroneous ones. That is, the error rate is
between 1.47% and 7.69%. In addition, we have 12,531 pairs of entities that
redirect to the same entity in the extended graph. The error rate is between
4.29% and 6.32%.

Next we study the equivalent entities suffering from different encodings (recall
the example given in Figure 2). We have 1,818 pairs of entities in the gold
standard.11 Among them, there are edges between 1,130 pairs in the original
identity graphs with an error rate between 2.21% and 8.50%. We discovered 688
new pairs that differ only by encoding with an error rate between 1.16% and
14.83%. Finally, there is a pair of entities whose IRIs in alternative encoding
are the same but they actually refer to different real-world entities. We conclude
that though the exception do not always hold, they are often useful.

5 Algorithm Design

We limit the scope of refinement algorithms in this paper to removing erroneous
identity links and forego identifying erroneous entities or adjoining additional

10 Redirection was tested with the requests Python package using the get function with
a max timeout of 5 seconds for connection and 25 seconds for reading.

11 We used the parse function in the rfc3987 and urllib Python library.

10 S. Wang et al.

Algorithm 1: partition

1 Input: an identity graph G, a weighting scheme w, a graph of redirect GR, a

graph of equivalence under various encodings GE

Result: status s, a set of edges removed A, the graph of partitions GP

2 initiate A as an empty set (to store removed edges);
3 initiate Hccs as a set of the connected components of G;
4 while |A| is increasing (no new edge to remove) and Hccs is not empty do
5 foreach Hcc ∈ Hccs do
6 (optional: obtain the corresponding subgraphs HR

cc, H
E
cc from GR, GE);

7 (Nccs, A
′) = partition iter(Hcc, w, HR

cc, H
E
cc);

8 A := A ∪A′;
9 remove Hcc from Hccs;

10 add new graphs Nccs that are not singleton to Hccs.

11 remove A from G to get GP ;
12 return (A, GP).

links. The intuition is that for two inter-connected clusters, if there is more force
pushing them apart than holding them together, then some edge(s) should be
removed to split the clusters apart. The “force” that pushes the clusters apart are
between pairs of entities violating the UNA. These pairs might not be directly
connected, but they can be connected through multiple paths. The removed
edges as the output of the algorithm is a cut for the graph. Computing an
optimal cut whose removal makes the graph consistent within each CC is APX-
hard (i.e. where there are polynomial-time approximation algorithms) [12]. We
can encode this problem (as soft and hard clauses) to an optimization problem
and employing an SMT solver [5]. The goal is to maximise the sum of weights
over all soft clauses while satisfying all the hard clauses. We choose this approach
because it enables fast reasoning over weighted constraints of relations of equality
and inequality and it returns a sub-optimal answer in case of timeout.

5.1 Algorithm using UNA

Since the iUNA/nUNA requires the same parameters, we present the algorithm
using the iUNA. That of qUNA can be derived simply by removing the param-
eters of redirect graphs and that of encoding equivalence. Algorithm 1 takes as
input a graph G, the corresponding redirect graph GR, the graph of equivalence
under various encodings GE , and a weighting scheme w. As a first step, we load
Hcss with the connected components of G. We obtain the corresponding sub-
graphs HR

cc, H
E
cc from GR, GE respectively. Gccs, together with GR

cc, G
E
cc and the

weighting scheme is then taken as the input of Algorithm 2. The removed edges
are collected in A. The algorithm stops when no more edges can be removed.

In the while-loop of Algorithm 1, there is a repeated call to Algorithm 2 that
examines each graph of a connected component in Hccs (line 7). Algorithm 2
takes advantage of an SMT solver’s power of reasoning over weighted relations

Refining Large Identity Graphs using the Unique Name Assumption 11

Algorithm 2: partition iter

1 Input: a graph of connected component Gcc, a weighting scheme w, a graph

of redirect GR
cc, a graph of equivalence under various encodings GE

cc

Result: a set of graphs of connected components Nccs, edges removed Acc

2 obtain random pairs of nodes, select only those that violates the iUNA, as P ;
3 if |P | ≤ 1 then
4 return (Gcc, ∅).
5 initiate an SMT solver o;
6 foreach entity e in Gcc do
7 introduce an integer variable Ie in the SMT solver;
8 assert hard clauses (0 ≤ Ie) and (Ie ≤ M) in o.

9 foreach pair (s, t) in P do
10 assert in o a soft clause NOT(Is == It) with weight according to w.

11 let F be the minimum spanning forest of Gcc;
12 sample a small amount of additional edges from Gcc as B;
13 foreach pair (s, t) in F ∪B do
14 assert in o a soft clause (Is == It) with weight according to w.

15 obtain G′R
cc the undirected graph of the (directed) graph GR

cc;
16 foreach pair (s, t) in G′

cc do
17 if there is a path between s and t in G′R

cc then
18 initiate/update the weight of a soft clause cr in o according to w.

19 foreach pair (s, t) in GE
cc do

20 initiate/update the weight of a soft clause (Is == It) in o according to w.

21 let m be the model of o after solving;
22 extract the removed edges Acc from m;
23 remove Acc from Gcc;
24 compute Nccs as the connected components without singletons;
25 return (Nccs, Acc).

of equality and returns a solution within a given time bound. We first randomly
sample some pairs of nodes. We keep those that violates the iUNA, denoted P
(line 2). If there is at most one pair in graph Gcc that violates the iUNA, we
keep the graph as it is (line 4). Otherwise, we initiate an SMT solver (line 5).
For each node, we introduce a integer variable. We encode two hard clauses to
ensure the values to be between 0 and M in the model m. These integer variables
will eventually be assigned an integer value in the model m after solving.

Next we explain how the soft clauses are generated. For each pair (s, t) in P ,
we obtain a clause NOT(Is = It) and associate it with a weight according to the
weighting scheme w (line 10). Instead of taking all the edges of Gcc, we take the
edges of its minimum spanning forest and a small sample of the edges to reduce
the load on the SMT solver. In line 11, we obtain the minimum spanning forest
F . For efficiency, we keep a set of edges in B (line 12) for the back propagation
process of SMT’s internal algorithm design. The edges of F ∪B forms the set of

12 S. Wang et al.

edges in Gcc to examine this round (line 11-14). Recall that in Section 4.3, our
analysis showed that it provides relatively reliable information when considering
redirection and equivalence under different encoding. We therefore encode the
edges of the redirection (line 15-18) as soft clauses. The undirected graph is used
for the checking of convergence of redirection of two entities (line 15, 17).

While not every soft clause is true in the model, all the hard clauses must be
satisfied. The goal is to maximise the sum of weights over all soft clauses while
satisfying all the hard clauses. Note that if an SMT solver fails to get an optimal
solution within the timeout, it will return the best sub-optimal solution (line
21). The edge (s, t) remains if and only if Is equals It in the model m (line 22).

The weighting scheme w consists of a series of functions that map clauses
to weights: w = (fG, fR, fE , fP). We used the training dataset to fine-tune the
weighting scheme. For a soft clause ce corresponding to an edge e, the weight is
fG(ce)+fR(ce)+fE(ce)+fP (ce). The first weighting scheme w1 consists of four
functions: fG assigns the clause of each edge in the F ∪B a weight of 5, the rest
0; Similarly, fP assignes the clauses corresponding to pairs in P a weight of 2. fR
and fE both increase the weight by 1 for that of G′R

cc and GE
c c respectively. After

some manual tuning, we provide an alternative weighting scheme w2 with the
corresponding values being 31, 16, 5, and 5, respectively. Other parameters and
hyper parameters were set according to Section 4.1 and fine-tuned. The upper
bound M was set to 2+|Gcc|/50. A random selection of 12% of the edges from
the original graph were kept in B. Finally, based on our experience with Z3, the
timeout bound for SMT solving was set to (|Gcc|/100 + 0.5) second.

6 Evaluation

6.1 Implementation

We used the networkx Python package12 for the computation of the connected
components and the minimum spanning forests. For the manual annotation of the
entities, we used ANNit13. We used the implementation of the Leiden algorithm
and the Louvain algorithm in CDlib14. As for SMT solver, we employed Z315

and used its Python binding [5]. We published all the code as an open source
project16. All our experiments were conducted on the LOD Labs machine. It has
32 64-bit Intel Xeon CPUs (E5-2630 v3 @ 2.40GHz) with a RAM of 264GB.

12 https://networkx.github.io
13 ANNit is a user-friendly interface for fast annotation of entities and triples. See

https://github.com/shuaiwangvu/ANNit for details.
14 Community Discovery Library is a meta-library for community discovery in complex

networks: https://pypi.org/project/cdlib/.
15 https://github.com/Z3Prover/z3
16 The code and implementation details are at https://github.com/shuaiwangvu/

sameAs-iUNA together with the results of several parametric settings.

Refining Large Identity Graphs using the Unique Name Assumption 13

6.2 Evaluation Metrics

While precision and recall are commonly used in evaluation metrics [17], the
presence of ‘unknown’ annotations makes them less suitable for this task since
no edge involving entity of ‘unknown’ counts toward precision or recall. Thus,
precision and recall do not adequately capture the qualities. Moreover, we noticed
that 11 graphs in our gold standard has no erroneous edges except those with
nodes labelled “unknown”. Therefore, we provide an additional metric. In its
design, we focus on two properties that the equivalence classes should possess
within the CCs resulting from refinement: (a) the equivalence class should not
be separated over multiple CCs; (b) two equivalence classes should not share the
same CC. This leads to the following metric for the graph G′ that results from
applying a refinement algorithm to G:

Ω(G′) =
∑

C∈G′
ccs

∑
Qe∈E(C)

|Qe|
|V |

|Qe|
|Oe|

|Qe|
|C|

.

Here, C iterates over all connected components in G′, and E(C) is a par-
titioning of the nodes in C by equivalence class, so that Q always represents
the set of nodes within a given C that refers to the same real-world entity e.
V represents the total number of vertices, and Oe is the set of all entities in G′

referring to e.
Within the summation, there are three factors. The first, |Qe|/|V | is the

proportion of the current set of vertices to the total. This turns Ω(G′) into
a weighted sum over all subsets |Q|, with the weights summing to the total
proportion of nodes not annotated “unknown”. The second, |Qe|/|Oe|, is 1 if all
references to e are in C, and lower if there are more references in other connected
components. This penalizes deviating from (a). The third, |Qe|/|C|, is 1 if all
nodes in C refer to e and lower if the connected component is shared with nodes
referring to other entities. This penalizes deviating from (b). Note that if the
graph contains no “unknown” nodes, the max. of Ω is 1.

6.3 Evaluation Results

We compare our algorithm using two variants of sources (implicit label-like and
comment-like sources) with two weighting schemes (w1 and w2, as defined in
Section 5) against the Louvain algorithm [6], the Leiden algorithm [1], as well
as the result of MetaLink with two threshold values [3, 16]. Table 4 presents the
results of the average of 5 runs for each method with best results highlighted.
The Louvain algorithm removes the most amount of edges. It has the highest
recall but relatively low precision. Recall the example in Figure 2, the results
of Louvain can be smaller isolated components. This problem also exhibits in
our evaluation, due to the significant amount of edges removed, its Ω values
are low despite varying its resolution parameter from 0.01 to 1.0. Compared
with Louvain, the result of the Leiden algorithm shows obvious improvements.
There are fewer edges removed while the precision and Ω have improved for both

14 S. Wang et al.

the training set and the evaluation set. As for Metalink, we run the algorithm
with two thresholds: 0.9 and 0.99 (only links with an error degree higher than
the threshold are considered erroneous). There are fewer edges removed in both
cases, with higher Ω values compared against that of Leiden and Louvain.

Training set Evaluation set
precision recall Ω |A| precision recall Ω |A|

Louvain
res=0.01 0.020 0.803 0.091 39,471.4 0.042 0.727 0.087 42,424.2
res=1.0 0.020 0.778 0.087 39,226.2 0.042 0.660 0.084 43,610.0

Leiden 0.249 0.198 0.377 3,398.4 0.068 0.323 0.439 2,782.6

MetaLink
t=0.9 0.076 0.029 0.522 241 0.086 0.032 0.524 337
t=0.99 0.036 0.004 0.591 58 0.013 0.001 0.635 99

nUNA

label, w1 0.126 0.150 0.590 406.2 0.042 0.063 0.597 684.6
label, w2 0.153 0.181 0.591 529.0 0.061 0.075 0.580 697.4
comment, w1 0.201 0.146 0.595 263.0 0.098 0.040 0.618 356.4
comment, w2 0.209 0.178 0.597 360.2 0.063 0.036 0.606 431.2

qUNA
w1 0.258 0.152 0.641 492.0 0.058 0.036 0.662 706.4
w2 0.227 0.174 0.640 566.6 0.101 0.054 0.671 634.2

iUNA

label, w1 0.333 0.127 0.606 78.0 0.122 0.013 0.652 236.8
label, w2 0.204 0.118 0.616 125.8 0.136 0.028 0.647 235.0
comment, w1 0.267 0.090 0.598 63.8 0.097 0.002 0.636 141.2
comment, w2 0.258 0.117 0.607 133.2 0.117 0.003 0.638 173.8

Table 4: Evaluation of the Louvain algorithm with two resolution values, the
Leiden algorithm, MetaLink with two threshold values, and our algorithm using
different UNA and settings.

In almost all cases, using comment-like sources results in better precision
values while having fewer edges removed. The difference of Ω between using
label-like sources and comment-like sources is minor. In general, fewer links
were removed when using the UNA and Metalink for refinement. Comparing the
nUNA with the iUNA, we can see that using the nUNA results in more edges
removed with a lower precision. When comparing the qUNA with the iUNA, we
find as well that the qUNA removes a larger amount of edges, which leads to
a slightly higher recall. In almost all settings, using the iUNA results in higher
precision, which could be the benefit of better modeling using exceptions. The
best Ω values in both sets are obtained using the qUNA, while using the iUNA
results in better precision with similar Ω values. Compared with Metalink, our
algorithm shows higher precision and better Ω values. Overall, our evaluation
indicates that different algorithms have different advantages, but using the UNA
shows clear benefits.

As for time efficiency, the Louvain and Leiden algorithm completes processing
both the training and evaluation sets within 40 seconds. For the algorithm using
the UNA, it takes around 8 minutes to process the training set in contrast to
up to 27 minutes for the evaluation set. In addition, we note that up to three

Refining Large Identity Graphs using the Unique Name Assumption 15

graphs in the evaluation set can suffer from timeout using our algorithm17. When
there is a timeout, the SMT solver returns a sub-optimal solution. Our manual
examination shows that some “harder” and larger graphs were distributed to
the evaluation set when constructing the two sets.

7 Discussion and Future Work

In this paper, we studied three definitions of UNA and proposed a UNA-based
identity refinement approach. RQ1 was answered by defining the iUNA that
considers certain exceptions that are common in large integrated graphs. For
RQ2 and RQ3, we created a gold standard and compared the reliability of iUNA
against the qUNA and the nUNA. For RQ4, we proposed an identity refinement
algorithm and evaluated its performance on different definitions of UNA.

Strictly speaking, our gold standard is not large enough for an accurate esti-
mate of the error rate of the entire identity graph. Using our sample, we found
that among the 3,678 erroneous edges, only 5 entities have multiple label-like or
comment-like sources. This indicates that the UNA can be used for refinement
but redundancy is not the direct cause of error. This is contrary to the conclusion
of [12] (see type 2 error: consistency and conciseness error).

The performance of our algorithm is sensitive to the parameters and hyper-
parameters. For example, the upper bound for each integer value M can signifi-
cantly influence the results if too small. Future work includes studying how our
algorithm scales with different time limits, automatic tuning of the parameters,
and extending the gold standard. The results of some other parametric settings
are included in the supplementary material in the repository.

The performance of MetaLink is comparable with the best outcome of our
algorithms. However, our analysis shows that no more than 10% edges removed
are shared between Metalink and our algorithms in various settings. It could
be promising to explore a hybrid approach in future work. Since our evaluation
confirms the superiority of the communities detected using the Leiden algorithm
compared to Louvain, it is also reasonable to quest how far the results can be
improved if MetaLink uses Leiden’s outputs for calculating its error degree.

The identity graph we study contains a large number of connected compo-
nents of size two, as well as two very large connected components. The biggest
CC in this dataset has 177,794 entities and 2,849,426 edges (No. 4073). The
second biggest has 21,191 entities and 101,269 edges (No. 142063). The rest are
significantly smaller with no more than 5076 nodes. Some past attempts using
SMT solvers have also discovered the bottleneck in scalability [20, 21]. Our initial
experiments show that removing the disambiguation entities has some potential
to reduce the size of connected components. In future work, we plan to design
scalable algorithms following a divide-and-conquer approach for the handling
of large connected components using pairs of entities that violate the UNA as
heuristics.

17 The connected components with the IDs 14872, 4635725, and 37544

16 S. Wang et al.

References

[1] Vincent A. Traag et al. “From Louvain to Leiden: guaranteeing well-
connected communities”. In: CoRR
abs/1810.08473 (2018). arXiv: 1810.08473. url: http://arxiv.org/
abs/1810.08473.

[2] Wouter Beek et al. “LOD laundromat: a uniform way of publishing other
people’s dirty data”. In: International semantic web conference. Springer.
2014, pp. 213–228.

[3] Wouter Beek et al. “MetaLink: A Travel Guide to the LOD Cloud”. In:
Lecture Notes in Computer Science. Springer, 2020, pp. 481–496. isbn:
9783030494605.

[4] Wouter Beek et al. “sameAs.cc: The closure of 500M owl:sameAs State-
ments”. English. In: The Semantic Web - 15th International Conference,
ESWC, Proceedings. Lecture Notes in Computer Science. Springer/Verlag,
2018, pp. 65–80.

[5] N. Bjørner. “Engineering theories with Z3”. In: Asian Symposium on Pro-
gramming Languages and Systems. Springer. 2011, pp. 4–16.

[6] Vincent D Blondel et al. “Fast unfolding of communities in large networks”.
In: Journal of statistical mechanics: theory and experiment 2008.10 (2008),
P10008.

[7] Peter Pin-Shan Chen. “The entity-relationship model—toward a unified
view of data”. In: ACM transactions on database systems (TODS) 1.1
(1976), pp. 9–36.

[8] John Cuzzola et al. “Filtering Inaccurate Entity Co-references on the
Linked Open Data”. In: Sept. 2015, pp. 128–143. isbn: 978-3-319-22848-8.
doi: 10.1007/978-3-319-22849-5_10.

[9] Christophe Guéret et al. “Assessing linked data mappings using network
measures”. In: Extended Semantic Web Conference. Springer. 2012, pp. 87–
102.

[10] Harry Halpin et al. “When owl:sameAs Isn’t the Same: An Analysis of
Identity in Linked Data”. In: The Semantic Web – ISWC 2010. Ed. by
Peter F. Patel-Schneider et al. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2010, pp. 305–320.

[11] Aidan Hogan et al. “Scalable and distributed methods for entity matching,
consolidation and disambiguation over linked data corpora”. In: Journal
of Web Semantics 10 (2012). Web-Scale Semantic Information Process-
ing, pp. 76–110. issn: 1570-8268. doi: https://doi.org/10.1016/j.
websem.2011.11.002. url: https://www.sciencedirect.com/science/
article/pii/S1570826811000813.

[12] Gerard de Melo. “Not Quite the Same: Identity Constraints for the Web
of Linked Data”. In: AAAI. 2013.

[13] I. Nasim et al. “What does it mean when your URIs are redirected? Ex-
amining identity and redirection in the LOD cloud”. In: Workshop on
Managing the Evolution and Preservation of the Data Web (MEPDaW).
2022.

Refining Large Identity Graphs using the Unique Name Assumption 17

[14] Laura Papaleo et al. “Logical Detection of Invalid SameAs Statements in
RDF Data”. In: EKAW. 2014.

[15] Joe Raad. “Identity Management in Knowledge Graphs”. doctoral disser-
tation. PhD thesis. University of Paris-Saclay, 2018.

[16] Joe Raad et al. “Detecting erroneous identity links on the web using
network metrics”. In: International Semantic Web Conference (ISWC).
Springer. 2018, pp. 391–407.

[17] Joe Raad et al. “The sameAs Problem: A Survey on Identity Management
in the Web of Data”. In: CoRR abs/1907.10528 (2019). arXiv: 1907.10528.
url: http://arxiv.org/abs/1907.10528.

[18] Raymond Reiter. “Towards a Logical Reconstruction of Relational Database
Theory”. In: On Conceptual Modelling: Perspectives from Artificial Intelli-
gence, Databases, and Programming Languages. Ed. by Michael L. Brodie,
John Mylopoulos, and Joachim W. Schmidt. New York, NY: Springer New
York, 1984, pp. 191–238. isbn: 978-1-4612-5196-5. doi: 10.1007/978-1-
4612-5196-5_8. url: https://doi.org/10.1007/978-1-4612-5196-
5_8.

[19] Andre Valdestilhas et al. “CEDAL: Time-Efficient Detection of Erroneous
Links in Large-Scale Link Repositories”. In: (Aug. 2017). doi: 10.1145/
3106426.3106497.

[20] S. Wang et al. “Refining Transitive and Pseudo-Transitive Relations at
Web Scale”. In: The Semantic Web - 18th International Conference, ESWC
2021, Proceedings. Lecture Notes in Computer Science. Springer Science
and Business Media Deutschland GmbH, 2021, pp. 249–264. doi: 10.1007/
978-3-030-77385-4_15.

[21] S. Wang et al. “SUBMASSIVE: Resolving subclass cycles in very large
knowledge graphs”. In: Workshop on Large Scale RDF Analytics. 2020.

