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Abstract. Biomedical knowledge graphs encode domain knowledge as
biomedical entities and relationships between them. Graph traversal al-
gorithms can make use of these rich sources for the discovery of novel
research hypotheses, e.g. the repurposing of a known drug. Traversed
paths can serve to explain the underlying causal mechanisms. Most of
these models, however, are trained to optimise for accuracy w.r.t. known
gold standard drug-disease pairs, rather than for the explanatory mech-
anisms supporting such predictions. In this work, we aim to improve the
retrieval of these explanatory mechanisms by improving path quality. We
build on a reinforcement learning-based multi-hop reasoning approach
for drug repurposing. First, we define a metric for path quality based on
coherence with context entities. To calculate coherence, we learn a set of
phenotype annotations with rule mining. Second, we use both the metric
and the annotations to formulate a novel reward function. We assess the
impact of contextual knowledge in a quantitative and qualitative evalu-
ation, measuring: (i) the effect training with context has on the quality
of reasoning paths, and (ii) the effect of using context for explainabil-
ity purposes, measured in terms of plausibility, novelty, and relevancy.
Results indicate that learning with contextual knowledge significantly
increases path coherence, without affecting the interpretability for the
domain experts.
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1 Introduction

Drug discovery is challenging and costly [8]: it can take very long, an average of
∼9 years for a drug to get approved by the relevant bodies [5]. Repurposing an
already approved drug is a good alternative: it may reveal new interesting drug
targets and pathways. However, considerable background knowledge about the
biochemical properties of drugs and diseases, their relationships, and the causal
mechanisms between them is required. By making knowledge about biomedical
associations and processes machine-readable, automated methods can aid ex-
perts in coming up with interesting new purposes for known drugs, to be further
tested in clinical trials.
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Modern Semantic Web technologies have shown a huge effort being directed to-
ward the generation of structured biomedical knowledge, with the use of shared
ontologies such as SNOMED-CT4, DrugBank5, the Cochrane Linked Data Vo-
cabulary6 or UMLS7.Researchers have aimed at linking such independent knowl-
edge bases into federated biomedical networks with a.o. genes, pathways, biolog-
ical processes, compounds and diseases [17,16,1], in support of automated drug
repurposing or, more broadly, the discovery of new knowledge. The problem of
drug repurposing on structured data can be formulated as a link prediction task
in which known drug-disease pairs are used as gold standard data to predict
novel ones [32,22,3,9].

Reinforcement learning (RL)-based multi-hop reasoning for drug repurpos-
ing has the advantage that reasoning paths can serve as explanations for newly
discovered links, but the key challenge is the discovery of meaningful paths.
Liu et al. [22] use logical rules, specifically metapaths (node types + relations
between them), mined using AnyBurl [24] to guide the RL agent in discov-
ering paths between diseases and compounds. Such metapaths can then be
ranked by domain experts in order to assess the interpretability of the paths
following these rules [35,23]. In most biomedical knowledge graphs, however,
metapaths have many distinct instantiations. An example being the metap-
ath Compound–binds–Gene–associates–Disease in Hetionet8, of which the Gene-
associates-Disease relation alone has an average number of ∼94 gene associations
per disease9. The gene-disease associations catalogued by Gwas9 are statistical,
meaning that variations in these genes may contribute to the development of
diseases or traits. This demonstrates that, often, only a subset of instantiated
paths describe valid causal mechanisms, and not only the metapath but also the
instantiated path, i.e., its entities, dictates their relevance.

In this work, we propose to guide the reinforcement agent’s path traversal
using auxiliary contextual knowledge about the phenotype(s) of a disease, i.e.,
its known symptoms. We formulate the task of drug repurposing as a contextual
link prediction problem, in which we guide multi-hop reasoning using knowledge
about a set of context entities. In RL-based multi-hop reasoning for drug repur-
posing [6], an agent traverses a graph of entities from disease to drug, rewarded
when a terminal entity is reached. In our work, additional knowledge about the
clinical phenotype of a disease is used to guide the path traversal of such agent
(for an example, see Figure 4). To the best of our knowledge, no research so far
has focused on RL-based multi-hop reasoning using context entities.

We apply our methodology to Hetionet8, a single integrative KG connect-
ing biological entities such as genes and pathways. We assess the impact of
contextual knowledge in a quantitative and qualitative evaluation and aim at

4 https://www.snomed.org/
5 https://go.drugbank.com/
6 https://data.cochrane.org/concepts/
7 https://www.nlm.nih.gov/research/umls/index.html
8 https://het.io/
9 https://www.ebi.ac.uk/gwas/

https://www.snomed.org/
https://go.drugbank.com/
https://data.cochrane.org/concepts/
https://www.nlm.nih.gov/research/umls/index.html
https://het.io/
https://www.ebi.ac.uk/gwas/


Explainable Drug Repurposing in Context via Deep Reinforcement Learning 3

measuring: (i) the effect training with context has on the reasoning paths, and
(ii) the effect of using context in causal explanations about phenotype-drug tu-
ples on the plausibility, novelty and relevancy of these explanations as assessed
by domain experts. Lastly, we present a real-world dataset consisting of patient
populations (one or more diseases and symptoms), extracted from systematic
reviews, that can be used for phenotype or population-based drug repurposing.
Our contribution is twofold:

1. a RL method for multi-hop reasoning based on context, named CoCo (Co-
herent with Context), for the discovery of interesting clinical hypotheses;

2. a real-world dataset of small graphs representing patient populations (dis-
eases, conditions, symptoms and comorbidities) from clinical trials.

2 Related Work

First, we discuss automated scientific discovery in general. Then, we move to AI
for medicine, and finally multi-hop reasoning for drug repurposing.

Machine-Supported Scientific Discovery. Automated hypothesis discovery
has been subject of study for a long time, since seminal works such as [33,2].
These works aimed at supporting scientists formulating testable hypotheses, ei-
ther through suggesting literature or by discovering co-occurrences and corre-
lations in data, sometimes using structured knowledge such as Medical Subject
Headings (MeSH)-terms. The Knowledge Integration Toolkit (KnIT) [26] used
methods such as matrix factorisation and graph diffusion to generate testable hy-
potheses in the biomedical domain. Methods for generated data insights were also
presented in other fields, such as astronomy, geoscience or neuroscience [27,12].
These models create variants of hypotheses, which scientists can then refine and
assess empirically.

One way to formulate the task of hypothesis generation, is through link
prediction over knowledge graphs [32,22,3,9], or the generation of a small graph
representing complex hypotheses. Attempts in this direction are the work of [15],
where social sciences hypotheses are generated using a specific set of ontologi-
cal classes, or [7] using generative adversarial models (GANs) for the prediction
of small molecular graphs. Predictions made by such models are, however, not
easily explained, which hampers trust especially in sensitive domains such as
clinical medicine [19].

AI for Medicine. Through rapid technological developments and data digiti-
sation, AI has found many applications in the pharmaceutical domain, from drug
design through protein structure prediction with AlphaFold [18], to drug screen-
ing through toxicity prediction, and drug repurposing [28]. A downside of using
common machine learning techniques for applications in medicine is the black-
box nature of most of the prediction systems, hampering trust in such systems
in sensitive domains such as medicine. Explainable AI methods tackle this issue
by providing transparent reasoning for the models in a variety of tasks, predic-
tion included. These systems generally provide explanations either by eliciting
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the models’ inner workings (e.g. visual cues or anchors [25]) or by using feature
importance [20,30]. Supplying an AI model with structured, machine-readable
background knowledge about known cause and effect relationships within the
problem domain [4] can instead support both the generation of hypotheses as
well as their explanation [10,9,3,22]. Rule mining [24,13] or path-search algo-
rithms over large-scale knowledge graphs [6,34], which carry the potential to
provide predictions with understandable explanations, have proven to be effec-
tive in more recent years. RL-based multi-hop reasoning for drug repurposing is
an example task.

Table 1: Hetionet metaedges
(predicates + types) and
number of facts.

Metaedge Count

participates(Gene,Biol.Proc.) 559504
expresses(Anatomy,Gene) 526407
regulates(Gene,Gene) 265672
includes(Gene,Gene) 147164
causes(Compound,Symptom) 138944
downregulates(Anatomy,Gene) 102240
upregulates(Anatomy,Gene) 97848
participates(Gene,Mol.Func.) 97222
participates(Gene,Pathway) 84372
participates(Gene,Cell.Comp.) 73566
covariates(Gene,Gene) 61690
downregulates(Compound,Gene) 21102
upregulates(Compound,Gene) 18756
associates(Disease,Gene) 12623
binds(Compound,Gene) 11571
upregulates(Disease,Gene) 7731
downregulates(Disease,Gene) 7623
resembles(Compound,Compound) 6486
localizes(Disease,Anatomy) 3592
presents(Disease,Symptom) 3357
includes(Pharma.Class,Compound) 1029
resembles(Disease,Disease) 543
treats(Compound,Disease) 483
palliates(Compound,Disease) 390 Fig. 1: Semantic schema of Hetionet.

Multi-hop reasoning for Drug Repurposing. Link prediction has been pro-
posed for the task of drug repurposing, in which a link between a disease and com-
pound is predicted. Himmelstein et al. [16] for instance, obtained and integrated
data from publicly available sources about biomedicine to create Hetionet8 (see
Figure 1) and identified network patterns, call metapaths, to distinguish treat-
ments from non-treatments, e.g., Compound–binds–Gene–associates–Disease.
Sosa et al. [32] used the Global Network of Biomedical Relationships
(GNBR) [29] to develop a knowledge graph embedding-based drug repurpos-
ing method to predict novel treatments for diseases. They assessed the validity
of these hypotheses using a variety of sources, and, similarly to Himmelstein et
al. [16], discovered meaningful metapaths explaining newly discovered links.
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One of the challenges to RL-based multi-hop reasoning, is that RL agents learn
without the help of gold standard reasoning paths. An agent can therefore learn
from nonsensical or meaningless search trajectories that incidentally lead to a
correct answer [21]. Finding meaningful higher-order neighbourhoods is chal-
lenging. The injection of additional knowledge in the path traversal can guide
multi-hop reasoning to learn from a more meaningful subset of trajectories. For
instance, [22] used metapaths from [16] to train a RL agent to walk a graph of
biomedical knowledge, receiving a reward if the path found for the Compound-
treats-Disease, or vice-versa, matched a metapath.

In our work, we hypothesise that not only metapaths dictate the meaningful-
ness of a path, but also its entities. Therefore, we train a RL agent by rewarding
paths of which the entities are coherent with the phenotype of a disease.

3 Multi-hop Reasoning Coherent with Context (CoCo)

We present preliminaries (Section 3.1), after which we discuss our main approach
(Section 3.2).

3.1 Preliminaries

Domain Knowledge. As auxiliary knowledge to drive the learning of multi-
hop patterns between diseases and compounds, we use knowledge of symptoms
(i.e. phenotypes). We base our choice on a few assumptions from biomedicine:

Assumption 1 A detailed understanding of how a condition’s symptoms relate
to underlying molecular processes can help in elucidating the molecular mecha-
nisms underlying these conditions, useful for identifying new drug targets [31,37].

Assumption 2 Shared symptoms can indicate shared genes between dis-
eases [31]. Symptoms can thus serve as additional knowledge for representation
learning of diseases and their associations with genes and other genotypes.

Biomedical Knowledge Graphs. A biomedical knowledge graph G is a col-
lection of biomedical facts {(e1, r, e2)} ⊆ E × R × E where E and R are a set
of entities (such as, genes or proteins, compounds, molecular functions, cellular
components, biological processes, pathways, diseases) and relations (binds, asso-
ciates, treats, downregulates, etc.), respectively. Inverse relations are indicated
by an underscore: binds −→ binds.

Logical Rules. Rule mining methods such as AnyBurl [24] or GPFL [13] mine
logical rules from large knowledge graphs for the task of link prediction. Logical
rules can be written in the form head ←− body, in which the body can be seen
as evidence for the head. We use lowercase letters to denote constants (ground
entities e and relations r ∈ G) and uppercase letters to denote variables. An
example of a ground path rule of length n is shown below. Straight ground rules,
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rules without cycles in the body, can be divided into cyclic (e1 = en+1), or
acyclic rules (e1 ̸= en+1).

r0(e0, e1)← r1(e1, e2), . . . , rn(en, en+1) (1)

With rule mining, path rules are generalised into different rule types. Every
method has a language bias, dictating what kind of rules can be learned. In this
work, we focus on Both Anchored Rules (BAR) or instantiated rules, as they
are capable of expressing relationships between pairs of entities. BAR rules are
generalisations of acyclic straight rules in which an atom in the head ei and the
tail atom ej are anchored by a constant, cfr. Eq. 2.

BAR :rt(X, ei)← r1(X,V 1), r2(V 1, ej) (2)

We exemplify this with data from our use case, as shown in Eq. 4, which expresses
that if a disease presents Sensorineural Hearing Loss, it was often associated
with a gene that participates in the positive regulation of Fc receptor mediated
stimulatory signaling pathway, with a confidence of α. For readability, we will
call these associations rule-based phenotype annotations.

α = 0.56 presents(X, ei)← associates(X,V 1), participates(V 1, ej)

ei = Sensorineural Hearing Loss

ej = positive regulation of Fc receptor mediated stimulatory signaling

(3)

The confidence score α refers to standard confidence [11], and is calculated by the
number of correct predictions the rule suggests over the training set (support),
divided by the number of possible groundings of the body atom of the rule.

Knowledge Graph Multi-hop Reasoning. Given a query (eq1, treats, ?) or
(?, treats, eq2), this approach aims to predict the missing element ?, through a k-

hop reasoning path e1
r1−→ e2

r2−→ . . .
rk−→ ek+1. We extend the task to reasoning

in context. Given a query (eq1, treats, ?, cq), or (?, treats, eq1, cq), in which cq
refers to additional knowledge about the query q, knowledge graph reasoning in
context aims to predict the missing element ? through a k-hop reasoning path
pq = e1

r1−→ e2
r2−→ . . . ek+1, coherent with cq = {e1, . . . , en}.

3.2 Proposed Approach

Link prediction through graph traversal as a Markov decision process has been
proposed in the MINERVA algorithm [6]. Our methodology, which we call CoCo
(Coherent with Context), extends the MINERVA algorithm, with the novelty
that we (i) formulate our queries as ternary relations (eq1, rq, eq2, cq): a treats
relation between a disease and drug, given a (set of) symptom(s), respectively,
which we (ii) train and evaluate using a novel path coherence metric as reward.
A schematisation of our method is presented in Figure 2.



Explainable Drug Repurposing in Context via Deep Reinforcement Learning 7

Path Coherence We define Path Coherence (PC) as a score between a rea-
soning path pq and context cq for a given query q. Symptoms in the Hetionet
graph do not contain any direct links between phenotypes and genes or other
biomedical entities. The human phenotype ontology10, includes curated pheno-
type annotations, but the coverage is rather low. Therefore, we use GPFL [13]
to mine these associations in the form of Both Anchored Rules (BAR), as ex-
emplified in Eq. 4, with the added advantage of interpretability.

α = 0.33 presents(X,hi)← associates(X, tj)

hi = Ataxia Telangiectasia

tj = Gene ATP7B

(4)

Path Coherence (Eq 5) will be calculated based on these associations. In Eq. 5,
pq refers to the multi-hop reasoning path, (tj , αj) ∈ rcq refers to the subset of
rule-based phenotype annotations for which the head entity hj is in the set of
context entities cq. tj then refers to the tail entity of the rule, and αj to the
standard confidence. The metric sums up standard confidences for rule-based
phenotype annotations that link a query’s context entities to its path entities.

PC(pq, cq) =
∑
ei∈pq

∑
(tj ,αj)∈rcq

αj{ei=tj} (5)

States. The state of the RL agent is encoded by the current location of the
agent et, the entity e at time t, as well as the query (eq1, r, eq2). More formally,

St ∈ S =
(
et, (eq1, r, eq2)

)
.

Actions. The set of possible actions available to the agent at state St is encoded
as ASt , and denotes all outgoing edges from the current entity et, as well as
their tail entities. At denotes an action taken at time t. As with the MINERVA
algorithm, we include self loops, allowing an entity to stay at the current node
in case the agent requires fewer steps to reach eq2.

Environment. The environment evolves according to the transition function
δ : S ×A ← S, the action chosen by the agent, by updating the current state St
to the new state St+1.

Policy Network. The history of our agent up to step t is denoted as Ht =
(Ht−1, At−1). The policy network encodes the agent’s transition history, and is
parameterised by a long-term-short-term memory network (LSTM) [14], allowing
for long-term dependencies between graph traversals.

ht = LSTM(ht−1,at−1) (6)

10 https://hpo.jax.org/app/data/annotations

https://hpo.jax.org/app/data/annotations
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Fig. 2: A graphical representation of our methodology during training. First,
the subset of rule-based phenotype annotations belonging to the query tuple’s
phenotype are retrieved. Second, A RL agent is trained to traverse the KG
from disease to compound or vice versa. If the correct query entity is reached,
a terminal reward of 1 is given. If the path is associated with the context via
a rule-based annotation, an additional reward is given equal to the standard
confidence of the rule (here PC = 0.33).

In Eq. 6, at−1 refers to the vector space embedding of the previous action, which
consists of [rt−1, et]: the embedding of the action relation and its tail entity. If
there is no previous action, at−1 refers to the zero vector. The history-dependent
action space distribution is given by Eq. 7 below, where W1 and W2 in Eq. are
weight matrices learned during training. By stacking the embeddings for all the
outgoing actions we obtain At. A next action At is sampled according to Eq. 8.

dt = softmax(At(W2ReLU(W1[ht;at; rq]))) (7)

At ∼ Categorical(dt) (8)

For each step made by the agent, we repeat Eq. (7)-(9) until the maximum path
length is reached. The parameters of the LSTM network together with W1 and
W2 form the parameters θ of the policy network πθ.

Rewards. Rewards are given according to Eq. 9 at the end of k transitions,
where k refers to the length of the reasoning path.
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R(Sk+1) = 1{t(ek+1)=t(eq2)} + τ{ek+1=eq2} + ρ{t(ek+1)=t(eq2)}
∑

ei∈pq

∑
(tj ,αj)∈rcq

αj{ei=tj}

(9)

The first part of the equation reflects a type reward: it is set to 1 if the correct
type t(eq2) is reached, and 0 otherwise. The second part of the function assigns
a reward of τ when the target entity is reached, 0 otherwise. The last part of
the equation adds a path coherence (PC) reward, multiplied by ρ, which is only
given when at least the correct type is reached {t(ek+1) = t(eq2)}, 0 otherwise.
We experimented with a stricter rule reward, only given when the agent reached
eq2, but hyperparameter optimisation showed this impacted accuracy.

Optimisation. As MINERVA, we employ the REINFORCE [36] algorithm to
optimise the expected rewards. The agent’s optimisation problem is given by Eq.
10, where D refers to the true underlying distribution of the (eq1, treats, eq2)
triples.

arg max E(eq1,treats,eq2)∼D EA1,A2,...,AL∼πθ

[
R(Sk+1)|eq1, eq2

]
(10)

The second expectation is calculated over multiple rollouts (sampled trajectories)
for each training example.

4 Experiments
Section 4.1 describes datasets used. Section 4.2 describes the rule-based pheno-
type annotations, and Section 4.3 describes the evaluation of our method.

4.1 Datasets

Hetionet training, validation and test set. Hetionet8 consists of declar-
ative knowledge within the biomedical domain, represented as binary relations
between biomedical entities. Even though the graph contains binary relations
between diseases and compounds, as well as between diseases and symptoms, it
does not contain complex n-ary relations such as a relation between a disease, a
set of symptoms, and a compound. Table 1 and 2 show statistics of the Hetionet
graph. It’s schema is shown in Figure 1.

Table 2: Hetionet general dataset statistics.

Entities Relations Triples Avg. node degree

47,031 24 2,250,197 95.8

For training and evaluation, we thus artificially construct such n-ary relations.
First, we retrieve all treats triples as well as all presents triples from Hetionet.
From those triples, we construct tuples (all valid combinations) of the form
(Compound,Disease,Symptom) and split them into training, validation and test
set. As we are interested in discovering paths that give insight into the mechanics
of drug treatments, we remove the edges resembles and palliates. Table 3 shows
final train, test and validation-set statistics.
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Real-world dataset. Additionally, we extract a real-world dataset of popula-
tions from Cochrane’s systematic reviews, which exemplifies how our approach
can be used to predict drug targets or compounds based on complex phenotypes.
The Cochrane Linked Data Project11 has semantically annotated a collection of
systematic reviews–a syntheses of clinical trials belonging to a specific research
question–according to the PICO ontology12, producing a small graph for each
systematic review (a “PICO”). First, we extract unique patient populations and
their diseases, conditions and symptoms from the PICO graphs13. In order to
reason over the extracted subgraphs, we join them with the Hetionet graph in
the following manner:

1. Filtering PICO graph. Using a SPARQL query, we extract populations and
their disease or phenotype entities. In PICO graphs, these are all entities
from the Cochrane Linked Data Vocabulary (CLDV)14 of type condition.
The query used to create these simplified graphs can be found online15.

2. Linking populations to Hetionet. Both the CLVD and Hetionet use different
codes to uniquely describe their biomedical entities. In order to join both
graphs, we therefore replace all relevant nodes with UMLS identifiers using
the steps enumerated below. The script used for this processing step can be
found online15.

(a) owl:sameAs links are added between nodes in the CLDV and equivalent
concepts from widely used vocabularies16. The CLDV maps disease and
outcome entities to the following vocabulaires: MedDRA, MeSH, and
SNOMED-CT.

(b) vocabularies that are used to represent diseases and symptoms in Het-
ionet are DOID and UMLS, respectively. Both vocabularies, as well as
those mentioned in (a), are downloaded from UMLS version 2021AA17.

(c) downloaded vocabularies are preprocessed by extracting all medical
entities and linking them their respective UMLS identifiers using
owl:sameAs.

(d) RDFpro18 is used to smush all preprocessed vocabularies, meaning that
all identifiers are replaced by their respective UMLS identifiers.

(e) all owl:sameAs links are removed, such that all disease, drug and symp-
toms are represented by codes from the UMLS vocabulary.

11 https://linkeddata.cochrane.org/
12 https://linkeddata.cochrane.org/pico--ontology
13 Initially, intervention nodes were extracted as well, but many of these proved too

coarse grained—e.g. viral agents—to be useful for multi-hop reasoning.
14 https://data.cochrane.org/concepts/
15 https://github.com/lisestork/coco
16 See the following concept for diabetes: https://data.cochrane.org/concepts/

r4hp38bjj6qx, which they indicate is linked to unique codes from MedDRA:
(10012594,10012601), MeSH: (D003920), and UMLS: (C0011849).

17 https://download.nlm.nih.gov/umls/kss/2021AA/umls-2021AA-full.zip
18 https://rdfpro.fbk.eu/

https://linkeddata.cochrane.org/
https://linkeddata.cochrane.org/pico--ontology
https://data.cochrane.org/concepts/
https://github.com/lisestork/coco
https://data.cochrane.org/concepts/r4hp38bjj6qx
https://data.cochrane.org/concepts/r4hp38bjj6qx
https://download.nlm.nih.gov/umls/kss/2021AA/umls-2021AA-full.zip
https://rdfpro.fbk.eu/
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3. Appending types. As a last step, types are appended to the UMLS codes,
e.g. Disease::C0348393 to ensure the graph remains compliant with the
Hetionet ontology after smushing, given that some UMLS codes are used
to represent distinct types in the Hetionet ontology (e.g., to describe a side
effect as well as a disease).

After preprocessing, we end up with 357 population tuples. Statistics are shown
in Table 3. An example tuple: a patient population with Haematological malig-
nancy, as well as Cardiac death, Cytomegalovirus infection, and Herpes simplex.
The dataset can be found online15. Further investigation is needed to evaluate
these results, as it does not yet include gold standard annotated drug targets
(i.e., genes) or compounds.

Table 3: Hetionet training, validation and test set statistics: dataset split, total
number of triples n, total number of (Drug,Disease,Symptom) tuples n+, number
of diseases nd, number of compounds nc and number of symptoms ns.

dataset n n+ nd nc ns

Hetionet train 950 27,632 71 272 372
Hetionet validation 236 - 41 97 -
Hetionet test 300 9,200 56 119 363
Real-world dataset 357 - 60 - 276

4.2 Rule-based Phenotype Annotations

To create a set of rule-based phenotype annotations, we applied GPFL [13] to
the full Hetionet graph to mine rules for the relation Disease-presents-Symptom,
as GPFL specialises in learning BAR rules (see Section 3.1). Recall that the set
of rule-based phenotype annotations r is needed in the reward function used to
train the policy network of the graph traversal algorithm (see Section 3.2), and
is used for evaluation. We preprocessed the rules before use, by taking only high
quality rules (which [13] defines as rules with a confidence score > 0.1, and a
head coverage of > 0.01), and only those for which the head constant was a
symptom (not a disease). Subsequently, we turned these rules into a rule set r
(cfr. Eq. 11).

r = {(h0, t0, α0), ...(hn, tn, αn)} (11)

The final ruleset consists of 4,981,259 rules with 1,746 unique head atoms and
33,449 unique tail atoms, and can be found online15. On average, each head atom
has 2,853 rules (min: 1, max: 48,961).

4.3 Experimental results

We evaluate our model on Hetionet in a quantitative and qualitative evaluation.
We aim at measuring: (i) the effect training with contextual knowledge has
on the quality of the reasoning paths, (ii) the effect training with contextual
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knowledge has on accuracy for the drug repurposing task, and (iii) the effect
of using context in causal explanations on plausibility, novelty and relevancy as
assessed by domain experts.

Quantitative Evaluation. We apply our method CoCo to Hetionet, as dis-
cussed in Section 3.2. After hyperparameter optimisation, we ran CoCo as well as
MINERVA ten times using the following hyperparameters: learning rate: 0.004,
ρ = 2, τ = 3, 2 LSTM layers, and a hidden layer size of 128.

Results. To evaluate path quality, we calculate Path Accuracy (PA):

PA =
n correct preds with PC > 0

n correct preds
(12)

We average PA over ten runs per model (CoCo and MINERVA), see Table 4.
Moreover, to show that learning with context does not sacrifice hits@k scores, we
compare CoCo to MINERVA on the basis of hits@1, hits@5 and Mean Reciprocal
Rank (MRR), averaged over ten runs per model. Lastly, to demonstrate the
difference in predictions and explanations between CoCo and MINERVA, we
show statistics for the hits@1 predictions (Table 5): entities of correct predictions,
as well as statistics of rewarded tail entities ti. We trained both models for path
length (PL) ∈ {2, 4}, as training with a PL=3 yielded significantly worse results.
We hypothesise this is due to Hetionet’s semantics: the number of path patterns
between disease and compound are reduced to a less meaningful subset.

Table 4: APA(%), Hits@k(%) and MRR (%) scores (± standard deviation) for
CoCo and the model without context (MINERVA), averaged over 10 runs, for
path length (PL) ∈ {2, 4}.

Model PL APA Hits@1 Hits@5 MRR

CoCo 2 65.61 (±23.19) 9.64 (±2.4) 14.11 (±2.25) 11.60 (±2.10)
MINERVA 2 59.63 (±14.94) 9.14 (±2.98) 14.64 (±3.74) 11.79 (±3.10)

CoCo 4 57.45(±6.98) 8.68 (±1.44) 18.15 (±1.87) 13.44 (±1.47)
MINERVA 4 45.87 (±4.25) 8.58 (±2.15) 18.44 (±1.60) 13.37 (±1.72)

We observe from Table 4 and Table 5 that for CoCo, APA as well as the num-
ber of distinct rewarded tail entities ti, has increased significantly for paths of
length 4 (paired t-test, p < 0.5). This can indicate that patterns have been dis-
covered between diseases and genes based on disease phenotypes. From Table
4, we additionally observe that hits@k results have not decreased nor increased
significantly.

Figure 3 shows rewarded rule tail types t(ti) during training. We can see that
rewarded entities are mostly of type Gene and Anatomy, and that these numbers
are increasing during training, indicating that a relationship between disease-
drug tuples and these entities is learned. Other entities are not rewarded often
during training. By observing Figure 1, we hypothesise that this is likely due to
path length, as entities of type Molecular Function, Biological Process, Cellular
Component and Pathway are more hops away from diseases and compounds.
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Qualitative Evaluation. For our qualitative evaluation, we evaluate the multi-
hop reasoning paths on the basis of plausibility, novelty and relevancy to the
domain, through an online survey. For both models (CoCo and MINERVA), we
extracted the path of the highest-ranked prediction for each example from the
test set. From this subset, we randomly sampled paths from the five most used
metapaths, making sure that half of those had a PC of > 0.

Table 5: Hits@1 statistics: path
length (PL), number of rule
hits nr (number of unique re-
warded rule tail atoms nt), num-
ber of unique diseases nd, num-
ber of unique compounds nc,
and number of unique drug-
disease triples nt.

Model PL nr (nt) nd nc nt

CoCo 2 143 (19) 26 46 49
MINERVA 2 109 (23) 27 61 63
CoCo 4 191 (56) 30 64 73
MINERVA 4 115 (41) 27 65 70

Fig. 3: Rewarded tail atom types t(ti) during
training, averaged over ten runs. Note that
the y-axis has a log scale.

Plausibility. For plausibility, we asked four annotators to rate each explanation
with one of three categories: implausible, partially plausible, plausible. Amongst
these annotators, the Krippendorff’s inter annotator agreement was αk 0.17, in-
dicating a slight agreement (0.01 < αk < 0.20). The average plausibility score
was 0.70, with a statistically insignificant difference between scores for paths
generated by the model trained with and without context—0.73 and 0.66, re-
spectively. Path length did influence interpretability scores significantly, with
a score of 0.82 and 0.57 for path length 2 and 4 respectively, indicating that
background knowledge about path semantics (for instance using metapaths in
the reward function [22]) during training is needed to improve interpretability
of longer paths.

Unexpectedly, using context in the explanation, as shown in Figure 4, had a
negative impact on the plausiblity score, 0.58 versus 0.86 for with and without
context, respectively. We believe the result to be due to the associations (such as
Ovarian cancer −→ Ataxia Telangiectasia) being unclear or difficult to interpret
by the annotators due to the semantics of the Disease-presents-Symptom rela-
tion. Annotators indicated issues with semantics, i.e., “Ataxia Telangiectasia is
not a symptom of Ovarian cancer”. Some annotators indicated a clearer descrip-
tion of the exact association would be more insightful “association lacks further
explanation of mechnism or relation”. Framing such explanations differently, or
in more detail, might therefore improve plausibility.

Novelty. To measure novelty, we asked annotators to indicate whether the fact
was new to them or not, True or False. Amongst four annotators, the Krippen-
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dorff’s αk was -0.20, indicating a less than chance agreement (αk < 0). Given
the varying expertise among the annotators (pharmacovigilance, geriatrics and
multimorbidity, evidence synthesis, immunology, and molecular biology, drug
therapies and safe use), we argue that the result is to be expected. No other re-
sult for novelty is calculated, as all explanations that were found plausible were
also known to at least one of the annotators.

Fig. 4: A 2-hop reasoning path between Ovarian cancer and Carboplatin, associ-
ated through an instantiated logical rule with Ataxia Telangiectasia, a symptom
of Ovarian cancer (as encoded in Hetionet).

Relevancy. For relevancy, we asked annotators to indicate, on a five point Lik-
ert Scale (Strongly disagree-Strongly agree), whether a fact was relevant to the
domain of biomedicine. To three of the four annotators, the causal explanations
were generally found relevant to the domain, given that in only 4 of the 24 cases
one of the annotators chose Neutral or Disagree/Strongly disagree. The four cases
that were rated as less relevant to the domain proved to be semantically incorrect.
For one case, the symptom appeared to be the cause of the disease rather than
a symptom, as noted by two annotators: “fetal hypoxia is a cause of epilepsy,
rather than a symptom”. Moreover, in two cases, the metapath appeared not
relevant, such as: Disease–associates–Gene–associates–Disease-associates-Gene-
binds-Compound, for which annotators indicated they did not understand the
reasoning. One annotator was less optimistic about path relevancy, specifically
for paths of length two. It was indicated that, even though these were plausible,
they were deemed less relevant as they would be easier to devise by humans.
Longer paths, on the other hand, are deemed less plausible, but potentially
more relevant, as it is more challenging for humans to think up longer chains of
reasoning.

Table 6: Predictions for Cochrane’s populations for PC = 0 and PC > 0, with
their systematic review codes.

Prediction α Review

Haematological malignancy & Herpes simplex −→ Raloxifene 0 CD012601
Haematological malignancy & Herpes simplex −→ Dactinomycin 0.11 CD012601
ADHD & Hyperkinesis −→ Haloperidol 0.15 CD005042
ADHD & Hyperkinesis −→ Thioridazine 0 CD005042
Hypertension & Hypervigilance −→ Ciclopirox 0.70 CD004351
Hypertension & Hypervigilance −→ L-Aspartic Acid 0 CD004351
Gestational diabetes & Hypertension −→ L-Glutamine 1 CD005542
Gestational diabetes & Hypertension−→ Dinoprostone 1.15 CD005542
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Lastly, we ran CoCo on our real-world dataset of populations from Cochrane
systematic reviews. The full dataset including predictions, as exemplified in Ta-
ble 6, can be found online15. Examples from Table 6 show that predictions can
be ranked based on path coherence (PC), where predictions with a PC < 0
do not take into account a disease’s phenotype, and those with a PC > 0 are
related to the disease’s phenotype. Given that a detailed understanding of how a
condition’s symptoms relate to underlying molecular processes can help in eluci-
dating the molecular mechanisms underlying these conditions, such predictions
can be useful for identifying interesting drug targets. However, without gold
standard annotations of these populations with drug targets and compounds, it
is challenging to quantify the exact improvement.

5 Conclusion

Based on two assumptions (Assumption 1 and 2), we employed a novel approach
for drug repurposing in context. We based our work on a RL-based multi-hop
reasoning approach for drug repurposing. First, we defined a metric for path
quality based on path coherence with a set of context entities (symptoms). Sec-
ond, we annotated the context entities with biomedical entities using logical
rule mining. Third, we used the measure for path coherence as a reward dur-
ing training. We evaluated: (i) the effect of training with these logical rules
on the reasoning paths, (ii) whether including these associations increased the
interpretability of the paths when presented to domain experts. Moreover, we
presented a real-world dataset of populations for multi-hop reasoning.

First, we discovered that after training with context, reasoning paths ex-
tracted for predictions on the test set changed significantly. They were found to
be more coherent with their context without sacrificing prediction accuracy. Sec-
ond, we found that an increased path length was found more interesting, given
that longer reasoning chains would be more challenging to discover by humans.
However, longer reasoning paths were also found less plausible or semantically
incorrect. The addition of metapaths (as done in [22]) to our methodology would
resolve this issue.

A limitation of our method is that it only learns from the similarity of diseases
based on their phenotype, whereas it does not take into account differences
between phenotypes of related diseases nor restrictions for drug treatments due
to co-occurring diseases. Moreover, even though we prove that paths discovered
during testing appear more coherent with context, it is challenging to quantify
the exact improvement without a larger gold standard dataset of drug-symptom-
disease tuples. This will be looked at in future work.
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