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Abstract. This paper introduces pyRDF2Vec, a Python software pack-
age that reimplements the well-known RDF2Vec algorithm along with
several of its extensions. By making the algorithm available in the most
popular data science language, and by bundling all extensions into a
single place, the use of RDF2Vec is simplified for data scientists. The
package is released under an MIT license and structured in such a way
to foster further research into sampling, walking, and embedding strate-
gies, which are vital components of the RDF2Vec algorithm. Several
optimisations have been implemented in pyRDF2Vec that allow for more
efficient walk extraction than the original algorithm. Furthermore, best
practices in terms of code styling, testing, and documentation were ap-
plied such that the package is future-proof as well as to facilitate external
contributions.
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1 Introduction

Knowledge Graphs (KGs) are an ideal candidate to perform hybrid Machine
Learning (ML) where both background and observational knowledge are taken
into account to construct predictive models. However, since KGs are symbolic
data structures, they cannot be fed to ML algorithms directly and first require a
non-trivial transformation step in which symbolic substructures of the graph are
converted into numerical representations. These transformation techniques can
typically be classified as being feature-based or embedding-based [26]. Feature-
based approaches are often interpretable, but require domain knowledge about
the task at hand and are effort-intensive. Embedding-based approaches, on the
other hand, are typically agnostic to the task and are usually able to outperform
their feature-based counterparts. Resource Description Framework To Vector
(RDF2Vec) [18] is an unsupervised, task-agnostic, and embedding-based ap-
proach that has gained significant popularity over the past few years. RDF2Vec
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builds on the popular Natural Language Processing (NLP) technique Word2Vec.
The latter generates embeddings for different tokens present in a corpus, by train-
ing a neural network in an unsupervised way that must predict either a token
based on its context (Continuous Bag of Words) or the context based on a token
(Skip-Gram). The corpus, fed to Word2Vec, is constructed by extracting a large
number of walks from the KG. A walk is a sequence of entities obtained from
the KG by starting at a certain entity and traversing the directed edges.

Since its initial publication, in 2017, many extensions to the algorithm have been
proposed. However, each of these extensions are individual implementations,
which complicates combining several of them. Moreover, the original code for
RDF2Vec was written in Java, which is significantly less popular than Python
for data science, according to the Kaggle Survey 20221. In Figure 1, the answers
to the question “What programming languages do you use on a regular basis?”,
where multiple answers were possible, are depicted. It should be noted that
among the 3862 of the people who selected Java as being used regularly, only 461
did not pick Python. This makes it difficult to integrate the original RDF2Vec
implementation into a data science pipeline, which is typically written in Python.

Fig. 1: Programming languages used by data scientists according to the Kaggle
Survey 2021.

In this paper, we present pyRDF2Vec, a Python implementation of the original
algorithm and many of its extensions. Moreover, various mechanisms are built,
allowing to better handle large KGs. The code is released under an open-source
license and is written in a way to facilitate further research into the different com-

1 https://www.kaggle.com/c/kaggle-survey-2022
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ponents of the RDF2Vec algorithm. The remainder of this paper is structured
as follows. In Section 2, we provide background on representation learning for
KGs, followed by an in-depth discussion of RDF2Vec and its extensions. Then, in
Section 3, we present the architecture of our pyRDF2Vec package and the mech-
anisms set in-place to easily allow for contributions by others. In Section 4, we
discuss some studies and other software packages that have already made use
of pyRDF2Vec. Finally, we conclude our paper in Section 6. In Appendix A, we
provide a code snippet that shows how pyRDF2Vec can be used.

2 Background

In this section, we describe the necessary background to elaborate upon pyRDF2Vec.
First, we will discuss related work regarding the transformation of a KG into
numerical representations. Afterwards, we outline an in-depth overview of how
RDF2Vec works and its extensions released over the past few years.

2.1 Representation Learning

As mentioned in the introduction, a feature-based or embedding-based transfor-
mation step is required that converts the symbolic KGs into numerical vectors
before they can be used in ML models. Especially embedding-based approaches,
which make use of Deep Learning techniques, have gained increasing popularity
over the past few years as these can be applied out-of-the-box and can run effi-
ciently on Graphical Processing Units (GPUs), which are quite commonly avail-
able today. Moreover, the largest advantage of embedding-based techniques is
that they are typically task-agnostic and as such do not require extensive domain
knowledge and/or significant effort, as opposed to feature-based approaches. A
further distinction can be made between embedding-based techniques. The first
category consists of techniques that learn embeddings either through tensor fac-
torisation or through negative sampling [15,3,26], e.g. TransE [1]. A second cat-
egory consists of Deep Learning architectures that make use of parameterised
transformations, based on information from the neighbourhood of a node that
is collected through message passing [19], e.g. Relational Graph Convolutional
Networks (R-GCN). The parameters of this transformation are learned through
back-propagation in a supervised fashion. A third, and final, category adapts
existing NLP techniques, such as Word2Vec [13], to work on graph structures.
RDF2Vec belongs to this final category [18].

2.2 RDF2Vec

RDF2Vec is an unsupervised, task-agnostic algorithm that achieves state-of-the-
art performances on many benchmark datasets [18]. It extends Word2Vec to work
on graph structures by first extracting walks that serve as a corpus. Each walk
can be seen as a sentence of a corpus and each hop within such walks corresponds
to a token. Word2Vec will then learn embeddings for each of these tokens in an
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unsupervised matter by learning to predict either a token based on its context
(Continuous Bag of Words), or the context based on a token (Skip-Gram). Over
the past few years, several extensions to RDF2Vec have been suggested, which we
will discuss subsequently. A good up-to-date overview of how RDF2Vec works,
which extensions have been proposed over the last few years, and of applications
that make use of RDF2Vec can be found on a website hosted by the original
authors2.

The number of walks that can be extracted quickly grows, depending on the
depth of those walks and the size of the KG. As such, exhaustively extracting
every possible walk becomes infeasible rather quickly. As a solution, Cochez et
al. [4] proposed several sampling, or biased walking, techniques which enable
only extracting a subset of walks that still capture most of the information.
Recently, more sampling strategies have been proposed: (i) utilising page transi-
tion probabilities [25], (ii) using Metropolis-Hastings sampling [27], or (iii) other
forms of prior knowledge [14].

Originally, the RDF2Vec algorithm used random walking and the Weisfeiler-
Lehman paradigm to extract the corpus of walks for Word2Vec. However, within
the domain of graph-based ML, walking techniques that are more advanced than
random sampling have been suggested over the past few years. In addition, it
has been shown that the Weisfeiler-Lehman paradigm introduces little to no
extra information in the extracted walks. As such, Vandewiele et al. evaluated
different walking strategies on several benchmark datasets to show that there is
no one-size-fits-all strategy, and that tuning the strategy for the task at hand
can result in increased performances [23].

Finally, Portisch et al. [17] applied an order-aware variant of Word2Vec to the
corpus extracted by the walking and sampling strategies, which resulted in sig-
nificantly increased predictive performances on multiple benchmark datasets.

3 pyRDF2Vec

In this section, we elaborate upon our pyRDF2Vec package. We first present its
architecture, then give an overview of all the extensions available today and
finally discuss the different mechanisms implemented to facilitate external con-
tributions.

3.1 Architecture

In Figure 2, an overview of the pyRDF2Vec workflow is provided. Seven main
modules are used, which we now discuss subsequently.

2 www.rdf2vec.org

www.rdf2vec.org
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Fig. 2: Workflow of pyRDF2Vec. A Graph and collection of Entities are provided
by the user to the Transformer (1), which is instantiated with a list of different
strategies consisting of a Walker and Sampler (2). The latter are responsible
for extracting walks from the Graph which are, in turn, fed to the embedder to
calculate Embeddings (3). In addition, the Transformer also extracts Literals
by following paths specified by the user.

1. Connector: coordinates the interaction with a local or remote graph. For
KGs located on hard disk, pyRDF2Vec uses rdflib to load the graph into
memory. If required, walk extraction from remote graphs is also possible
through a SPARQL endpoint. Additional connectors can be implemented
based on the provided Connector base class.

2. Graph: is the internal representation of the KG based on the representa-
tion of De Vries et al. [5]. It is used to efficiently traverse the graph and
to store additional information regarding nodes and edges without being de-
pendant upon other Python packages. As this representation removes the
multi-relational aspect of the KG by transforming the edges to intermediate
nodes, it enables pyRDF2Vec to create embeddings for predicates.

3. Entities: is the set of nodes within the graph for which we want to generate
embeddings. These entities will serve as the starting points for the walk
extraction and need to be provided by the user. It should however be noted
that in fact all of the entities that appear in these extracted walks will have
an associated embedding.

4. Transformer: the main interface for users that combines all other compo-
nents.

5. Sampler: prioritises the use of some edges in the graph over others using
a weight allocation strategy. The current pyRDF2Vec version implemented
each of the sampling techniques described by Cochez et al. [4]. The currently
supported sampling strategies are:

– Uniform sampling: assigns a uniform weight to each edge.
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– Object frequency: prioritizes walks containing edges with the highest
degree objects. The degree of an object is defined by the number of
predicates present in its neighbourhood.

– Predicate frequency: prioritizes walks containing edges with the highest
degree predicates. The degree of a predicate is defined by the number of
occurrences a predicate appears in the graph.

– Predicate-Object frequency: prioritizes walks containing edges with the
highest degree of (predicate, object) relations. The degree of such relation
is defined by the number of occurrences that a (predicate, object) relation
appears in the graph.

– Wide: gives priority to walks containing edges with the highest degree of
predicates and objects. The degree of a predicate and an object is defined
by the number of predicates and objects present in its neighbourhood,
but also by their number of occurrences in the graph.

– PageRank: prioritizes walks containing the most frequent objects. This
frequency is defined by assigning a higher weight to the most frequent
objects using the PageRank ranking.

Additional sampling techniques can easily be implemented, according to the
provided Sampler base class.

6. Walker: responsible for extracting walks from the KG. Different walking
strategies, proposed by Vandewiele et al. [23] are incorporated in the current
pyRDF2Vec version. The currently supported walking strategies are:
– Random: equal probability to select a hop within our walk
– Weisfeiler-Lehman: selecting hops based on the Weisfeiler-Lehman ker-

nel.
– Walklets: walks of length two containing the root node and one of the

hops.
– Anonymous: random walks but neglecting the label information
– HALK: hierarchical random walks, removing rare hops
– N-Gram: one-to-many mapping within walks by introducing wild cards
– Community: provide a probability to hop to important (community)

nodes within the graph.
New walking strategies can be implemented using the Walker base class.

7. Embedder: is in charge of transforming the extracted walks into embed-
dings, based on a trained model. By default, Word2Vec is used within this
embedder code to generate these embeddings. A fastText [9] embedder is also
made available in the current pyRDF2Vec version and additional embedding
techniques can be added by using the Embedder base class.

It is important to Connector, Sampler, Walker, and Embedder expose interfaces
that can be implemented by users. That way, we hope to both facilitate and
stimulate further research into these components of the RDF2Vec algorithm.

3.2 Optimizations and Extensions

The pyRDF2Vec implementation has several extensions, that speed up walk ex-
traction and provide information in addition to the embeddings based on walks.
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First, the Transformer takes a list of Walker strategies, with optionally asso-
ciated Sampler strategies, which enables the combination of several strategies.
This allows for further research into techniques similar to ensembling, where the
information obtained from several strategies is combined. This combination can
be done either (i) on corpus-level, by concatenating the walks extracted by the
different strategies together before feeding them to the Embedder, (ii) on the
embedding level, where embeddings are learned on the corpora of each strategy
individually and then aggregated, or (iii) on prediction level, where the embed-
dings learned on each corpus are fed to a classifier to make predictions for the
downstream task and then aggregated. The combination of different strategies
is illustrated in the example code provided in Appendix A.

A second extension in the pyRDF2Vec allows the extraction of literal information
in addition to the embeddings learned, based on the graph structure surrounding
entities of interest. To achieve this, the user can specify a set of paths, starting
from the nodes provided in Entities, for which literal information can be found.
pyRDF2Vec will then traverse these paths and return (i) NaN if the literal cannot
be found, (ii) a scalar in case exactly one literal can be found, and (iii) a list
of literals in case the path to a literal can be found multiple times. From then
on, the user can process this information and concatenate this to the provided
embeddings. The usage of literal information is illustrated in the example code
provided in Appendix A.

pyRDF2Vec enables reverse walking by traversing across incoming edges as op-
posed to outgoing edges. This is due to the fact that the direction of certain
predicates is chosen rather arbitrarily [e.g., (Brussels, isCapitalOf, Belgium)
vs. (Belgium, hasCapital, Brussels)]. This also allows for nodes from Entities

to be in positions different from the starting position within walks.

Several mechanisms are implemented to speed up the extraction: (i) SPARQL
requests to find the next hop in walks can be bundled together to reduce over-
head introduced by HTTP when a remote KG is used, (ii) multi-threading is
enabled to parallelize the extraction of walks, and (iii) caching is implemented
to avoid redundant requests. To show the effect of these mechanisms, a bench-
mark evaluation on three well-known datasets from the original RDF2Vec pa-
per was performed. In this benchmarking approach, a comparison was made
between the fully optimized pyRDF2Vec library and a version resembling the
original RDF2Vec approach. The results, for a varying amount of entities for
which embeddings were created, are provided in Table 1. For large datasets, the
reduction in time is more than 50%. For smaller datasets such as the MUTAG
datasets, the optimized pyRDF2Vec package can be up to 10 times faster.

3.3 CI/CT/CD and Documentation

To facilitate contributions by the open-source community to our code reposi-
tory, multiple mechanisms have been set up. First, Continuous Integration (CI),
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Table 1: Evaluation of the SPARQL bundling, multi-threading and cache opti-
misations for different datasets in function of the number of entities. The time
measurements are averages and their standard deviations over 10 different runs.
The last column shows the relative speedup of pyRDF2Vec compared to the orig-
inal, non-optimized, RDF2Vec implementation in Python.

Dataset Entities Depth #Walks
Time (s)

Speedup
(py)RDF2Vec pyRDF2Vec

MUTAG
25

4 500
74.85± 13.88 7.30± 0.34 10.25

50 132.99± 24.02 14.75± 0.75 9.02
100 255.83± 35.86 28.20± 1.06 9.07

AM
25

4 500
87.92± 17.87 9.83± 0.51 8.94

50 207.97± 30.11 82.84± 4.61 2.51
100 339.50± 39.52 87.68± 3.70 3.87

DBP:Cities
25

4 500
541.89± 29.63 218.43± 16.41 2.48

50 1037.23± 84.15 401.44± 48.54 2.58
100 1950.79± 132.02 764.23± 115.90 2.55

through the use of GitHub Actions3, is implemented which makes sure that the
merge of the work of several developers does not impact the release of a project.
With each push to one of the branches, several checks are performed, such as
checking whether any styling guidelines have been violated. Second, Continuous
Delivery (CD) is guaranteed as the main is always supposed to be the stable
branch for which the checks performed by the CI pass. Added to that, the use of
poetry 4 as dependency manager helps to facilitate future releases of pyRDF2Vec
to the PyPI platform. Finally, a Continuous Testing (CT) mechanism executes
a battery of unit tests, using pytest 5, for every push to the code repository.
Afterwards, a coverage report is generated. With the help of these continuous
methods, pyRDF2Vec has been able to release several new features and fix bugs
to increase its stability, popularity, and notoriety.

Having an up-to-date and clear documentation is essential for the proper use
of a library and its evolution. Good documentation will make it easier to use
and contribute to a library. To improve the clarity of the documentation in
Python, mypy 6, an optional static type checker, can also be used in addition to
PyDoc. While Python is natively a dynamically typed language, the use of such
a static type checker requires that consistent types are filled in, which improved

3 https://github.com/features/actions
4 https://python-poetry.org/
5 www.pytest.org
6 http://mypy-lang.org/

https://github.com/features/actions
https://python-poetry.org/
www.pytest.org
http://mypy-lang.org/
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documentation. Finally, this documentation generation is done with Sphinx 7

and is automatically updated on the online website hosted by Read the Docs,
at each commit on the main branch.

4 Package Usage

At the time of writing, pyRDF2Vec has amassed 180 stars on Github and 24700
downloads according to PePy8. An overview of the number of downloads for the
latest six months can be found in Figure 3.

Fig. 3: The number of downloads of the last 180 days of our pyRDF2Vec package.

pyRDF2Vec has been used in several research projects and practical use cases.
As of today, pyRDF2Vec appears in 40 studies published on Google Scholar9. We
now give a brief overview of these studies. Ontowalk2vec [8] and Owl2Vec* [2]
extend pyRDF2Vec to embed concepts by extracting walks from ontology infor-
mation. Iana et al. [11] showed that applying reasoning to infer extra information
in the KG before extracting walks results in little to no increased predictive per-
formance. Portisch et al. [16] compared embedding techniques suited for link
prediction and suited for data mining on both link prediction and data mining
tasks. pyRDF2Vec was used as one of the data mining techniques during evalu-
ation. In [12], pyRDF2Vec among many other embedding techniques, has been
compared to non-embedding methods to better understand their semantic capa-
bilities. In Sousa et al. [22] pyRDF2Vec is used to tailor aspect-oriented semantic
similarity measures to fit a particular view on biological similarity or relatedness

7 https://www.sphinx-doc.org/
8 https://pepy.tech/project/pyRDF2Vec
9 https://scholar.google.com/scholar?q="pyRDF2Vec"

https://www.sphinx-doc.org/
https://pepy.tech/project/pyRDF2Vec
https://scholar.google.com/scholar?q="pyRDF2Vec"
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in protein-protein, protein function similarity, protein sequence similarity and
phenotype-based gene similarity tasks. Engleitner et al. [7] compare pyRDF2Vec
with other embedding techniques for news article tag recommendation. Shi et
al. [21,20] use pyRDF2Vec to calculate semantic similarity between concepts in
several datasets. Gurbuz et al. [10] evaluate many different techniques, includ-
ing pyRDF2Vec, for explainable target-disease link prediction. Steenwinckel et
al. [24] compare their newly proposed technique, INK, to state-of-the-art tech-
niques such as pyRDF2Vec. Finally, Degraeve et al. [6] qualitatively compare em-
beddings produced by pyRDF2Vec with embeddings produced by their proposed
RR-GCN through a t-SNE plot.

5 Discussion

In the previous sections, we showed how and why we designed pyRDF2Vec. The
number of downloads or the number of stars shows the interest in the created
package, but it does not directly show its research impact. Many researchers
already depend upon this resource as shown in the previous section. They use
embeddings in a wide research field, far beyond the scopes of the semantic web
community. This is also reflected in the questions asked as GitHub issues, where
the authors of this paper frequently have to explain some key concepts within
our community (such as Literals, SPARQL, remote endpoints, etc.).

Besides its popularity, the pyRDF2Vec package is created to be extended and
used in many application domains. The original RDF2Vec package had some
limitations regarding extendability. To make sure new research ideas could be
implemented based on the original RDF2Vec idea, a redesign of the Graph-
Transformer-Walker-Embedder was, to our knowledge, needed. Separating all
these key components in a new architecture benefits both the maintenance of
this package and it resulted in the optimizations to deal with larger and more
complex KGs.

6 Conclusion and Future Work

This paper presented the pyRDF2Vec software package. It reimplements the well-
known RDF2Vec algorithm in Python, as this language is several significantly
more popular in the data science community than Java, in which RDF2Vec was
originally implemented. This reimplementation allows data scientists to inte-
grate RDF2Vec immediately into their pipeline. Many optimisations regarding
the walking algorithm were added to ensure this package can extract embed-
dings fast while handling large knowledge graphs. In addition to the original
algorithm, pyRDF2Vec implements many extensions that have already been pub-
lished, provides additional information and can handle literals. The fact that
these extensions are bundled in a single place could facilitate future research.
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The pyRDF2Vec architecture is set up in such a way, in combination with au-
tomatic styling, testing, and documentation to foster future external contribu-
tions. Several research projects and use cases have already used pyRDF2Vec in
their experimentation or as a basis for their code, which we discuss in this paper.

Resource Availability Statement: pyRDF2Vec is available under a MIT license on
Github10.
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A Appendix: Example Usage

We now provide a simple code snippet in Listing 1 that demonstrates how a
user can generate embeddings for nodes of interest in his/her KG with just a
few lines of code.

Listing 1: Example usage of pyRDF2Vec

1 # entities is a list of URIs which we want to embed.

2 entities = [ ... ]

3

4 # Loads a KG object from hard disk , removes triples with

5 # "dl#isMutagenic" as predicate , and specifies the paths

6 # where literals can be found.

7 dl = "http ://dl-learner.org/carcinogenesis"

8 kg = KG(

9 "mutag.owl",

10 skip_predicates ={dl + "#isMutagenic"},

11 literals =[

12 [

13 dl + "#hasBond",

14 dl + "#inBond",

15 ],

16 [

17 dl + "#hasAtom",

18 dl + "#charge",

19 ],

20 ]

21 )

22

23 # Create a Word2Vec embedder that trains for ten epochs.

24 embedder = Word2Vec(workers=1, epochs =10)

25

26 # Create a Sampler that uses PageRank (damping 0.85).

27 sampler = PageRankSampler(alpha =0.85)

28

29 # Use HALK strategy to extract all walks of depth 2.

30 walker1 = HALKWalker (2, None , n_jobs=4, sampler=None)

31

32 # Create walker that samples 100 walks per entity.

33 walker2 = RandomWalker (2, 100, n_jobs=4, sampler=sampler)

34

35 # Create our transformer object.

36 transformer = RDF2VecTransformer(

37 embedder ,

38 walkers =[walker1 , walker2]

39 )

40

41 # Extract the embeddings and literals.

42 embeddings , literals = transformer.fit_transform(kg, entities)
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