
MOSAIK: An Agent-Based Decentralized Control
System with Stigmergy For A Transportation

Scenario ⋆

Sebastian Schmid1[0000−0002−5836−3029], Daniel
Schraudner1[0000−0002−2660−676X], and Andreas Harth1,2[0000−0002−0702−510X]

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Technical
Information Systems, Nuremberg, Germany

{sebastian.schmid, daniel.schraudner, andreas.harth}@fau.de
2 Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, Division Data

Spaces and IoT Solutions, Nuremberg
andreas.harth@iis.fraunhofer.de

Abstract. We investigate possibilities for implementing the decentral-
ized control of transporters with Semantic Web agents to fulfill a given
transportation task. We present the MOSAIK framework as a system
to build and simulate agents to control transporters using stigmergy for
communication, and self-organize based on local decisions. Our frame-
work uses Semantic Web technologies because the communication paradigm
of stigmergy directly maps to the REST constraints of the application
architecture of the web. The system achieves self-organization by imple-
menting a combination of simple reflex web agents that coordinate using
web resources as environment for stigmergy. Finally, we evaluate our sys-
tem compared to an agent-based simulation and discuss requirements of
decentralized systems on the Semantic Web using stigmergy.

Keywords: Self-organization, Transportation, Multi-agent system

1 Introduction

Research for industrial transportation and intralogistics focuses on decentralized
control in transportation systems, promising scalability, adaptivity, and flexibil-
ity [6,27], in contrast to centralized control that is limited in data processing and
scalability, and imposes the threat of a single point of failure [7].

The most promising approaches for decentralized control in transportation
are multi-agent systems (MAS), where decision making to solve transportation
orders happens in agents locally [27]. MAS are considered appropriate to solve
transportation problems [35], are robust, scalable, and can cope with changing
environments efficiently [6]. The question remains, how control of these trans-
porter agents can be assured without losing the advantages of decentralized sys-
tems by introducing centralized control? Existing MAS approaches already try
⋆ This work was funded by the German Federal Ministry of Education and Research

through the MOSAIK project (grant no. 01IS18070A).

2 Schmid et al.

to implement decentralized control, e.g. based on auctions [8], forecasting [22],
negotiation [10], or hybrid approaches like local coordination and plan merging
[1], but often centralized components remain as part of control.

We believe that an agent-based decentralized control system that fulfills the
advantages of scalability, adaptivity, and flexibility needs to possess at least the
following properties:

1. Stateless, reactive agents: Agents shall possess no internal states and only
react to their perceived environment, as so-called simple reflex agents (SRA)
[25]. SRAs scale well as SRAs do not get more computationally expensive
with an increased problem size and still give a coherent outcome [34].

2. Indirect communication: The results of SRA’s actions are not saved as
agent state, but applied to the environment. Agents use their common en-
vironment as medium to communicate indirectly with each other, which
is called stigmergy [20]. Indirect communication reduces coupling between
agents, keeps the population flexible, and leads to resilience against break-
downs of individual agents by distribution of knowledge [3].

3. Loose coupling between agents: Agents shall not make assumptions
about the agent population and only focus on their own task. For a single
agent there shall be no difference if only itself or multiple agents are in the
system. The system’s adaptive behavior emerges from indirect interactions
between agents [18].

4. Use of local information: Agents shall use only and thus adapt to lo-
cally available information to decide on their actions [17]. Together with
stigmergy, the use of local information agents may achieve an overall goal
by self-organization via explicit, directive stigmergy [33] that communicates
opportunities and goal accomplishments between agents.

We put an emphasis on statelessness, indirect communication and loose cou-
pling between agents, as we believe these form the major requirements for a
decentralized control system.

To motivate the problem, we introduce the example of a driverless transporta-
tion systems (DTS) whose transporters shall be controlled by agents we realize
with the MOSAIK framework [5]. We discern active components, agents, and
reactive components, called artifacts that respond to agents’ actions, and form
together the agents’ environment. The agents shall self-coordinate to explore the
shop floor in a decentralized manner and use exclusively indirect communication.
We assume that all data for agents to decide on is available in RDF (Resource
Description Framework) in their environment. The environment shall be acces-
sible for agents via a RESTful Read-Write Linked Data interface as well. We
introduce our running example of a transportation scenario in Section 2.

We propose to use the advantages of stigmergy, that uses only indirect, decen-
tralized communication for decentralized self-organization and control to keep
the advantages of the overall decentralized system. Here, the Semantic Web
offers a uniform interface for interaction between agents and artifacts as envi-
ronment to share data with a common understanding by using established web
technologies, as also the rising recent interest in the combination of autonomous

MOSAIK: An Agent-Based Decentralized Control System With Stigmergy 3

agents and the Semantic Web shows [4]. Our presented combination of SRAs as
stateless and independent agents, stigmergy for indirect communication, and the
exclusive use of local information leads to a decentralized control system that
consists of flexible software agents that can run in the cloud as well as on the
edge, use local information without the need to crawl RDF graphs extensively,
scale easily with problem sizes, and are resilient with graceful degradation, as
agents’ data survives in the environment.

We present our system, based on the MOSAIK model [5], consisting of trans-
porters and workstations, which are reactive machines (called artifacts), and
transporter agents, which control transporter artifacts via Linked Data tech-
nologies that is RDF as data model and HTTP for communication via REST-
ful interfaces. We built a decentralized transportation system according to the
paradigms of stigmergy and Read-Write Linked Data, fulfilling the demands of
Industry 4.0 for an agent-based system on state-of-the-art web technology level.
Our contributions are:

– We implement the MOSAIK data model and interface for decentralized
agents to control decentralized transporter artifacts via Linked Data.

– We present a formalization of the system’s demanded behavior and imple-
ment the behavior in form of condition-action rules and derivation rules for
agents, and state change rules and request processing rules for artifacts.

– We evaluate the performance of our system for a transportation task and
compare the outcome to an agent-based simulation.

2 Running example and transportation scenario

We introduce our example used throughout the paper of a transportation sce-
nario, also depicted in Fig. 1.

Example 1. A shop floor, represented by a 3 × 6 grid, contains transporter1
at (2,2), transporter5 at (3,1), and two colored stations station1 at (0,2)
and station2 at (5,2), all as artifacts. Station1 is a blue station and accepts
blue products, station2 is a green station and accepts green products. Agents
control the transporters, here ldfu5 controls transporter5.

Transporter5 holds a blue product, so ldfu5’s reflexes try to find suitable
adjacent floor tiles for transporter5 to move closer to station1 to deliver
the product. Agents may only perceive information that is locally available to
their controlled transporter, e.g. for ldfu5 transporter5’s floor tile (3,1), and
the eight adjacent fields. Meanwhile, ldfu1, controlling transporter1, evaluated
the surrounding floor tiles of transporter1 and perceived a so-called stigmergy
mark (blue arrow) at (1,2), which helps agents to find the nearest station by
following the gradient in the direction of the respective station (see Sec. 3). ldfu1
creates a stigmergy mark at (2,2) to extend the stigmergy gradient. ldfu5 orders
transporter5 to follow these stigmergy marks successively to eventually arrive
at station1. Therefore, ldfu5 perceives the now created blue stigmergy mark
at (2,2), concludes that transporter5 will get closer to station1 by moving to
(2,2), and thus orders transporter5 to move to (2,2).

4 Schmid et al.

ldag 1

0 1 2 3

1

2

Y
X 4 5

3

a b

c

dtransporter1

transporter5
ldfu5

ldfu1

Fig. 1: Detail view of the used shop floor scenario: a) Blue station1 with green
product, b) transporter5 with blue product, c) empty transporter1, d) empty
green station2. All components are located on the shop floor’s tiles (black and
white grid). The blue arrows symbolize a gradient of blue stigmergy markers
that point the way to the blue station1 (the dashed stigmergy mark was just
created). The respective transporters are controlled by agents.

Example 1 emphasizes our discussed properties from Sec. 1:
1. Stateless, reactive agent: ldfu5 does not save information in internal states

and only reacts to outside stimuli like the sigmergy mark at (2,2)
2. Indirect communication: ldfu1 saves stigmergy markers in the environment

at (2,2) to point the way to stations
3. Loose coupling between agents: ldfu5 requires no knowledge about ldfu1

and only perceives ldfu1’s action of putting a blue stigmergy mark to (2,2)
4. Local information: ldfu5 can only perceive the floor tiles that are next to

transporter5’s location at (3,1)
Ex. 1 and Fig. 1 are only a part of the bigger overall scenario, where trans-

porters, as artifacts, have to fulfill transportation tasks [26]: A square shop floor
with 7×7 floor tiles has four stations, each with one of four different colors green,
red, blue and yellow. A station accepts only products of its own color. Stations
randomly produce a product of a different color when their output port is empty.
Three transporters have to bring colored products to the correct station of the
same color. The agent controlling each transporter evaluates the transporter’s
own field and the eight adjacent fields.

Agents leave colored marks with values on floor tiles that gets higher the
further away the tile is from a perceived station. An agent that follows the de-
scending values will end up at a station [17]. Agents have no model of the shop
floor, and do not communicate directly with other agents. The presented, simple
scenario can be easily extended to a manufacturing shop floor that produce vari-
ants of a product along workstation, as for small batches of customer-specified
products are manufactured, e.g. modular smartphones with different processor,
memory size, and display as in [28].

3 Theoretical and technical background

3.1 Agent-based systems and stigmergy
Russell and Norvig [25] describe the basic agent program for simple reflex agents
(SRA), where an SRA is described as simplest possible agent form. SRAs base

MOSAIK: An Agent-Based Decentralized Control System With Stigmergy 5

their actions only on their current perception during a so called perception-
thought-action cycle, but have no memory. A set of condition-action rules gives
the behavior, so called reflexes. A reflex triggers an action whenever the respec-
tive condition is fulfilled.

Stigmergy is the use of asynchronous interaction and information exchange
between agents exclusively through changes in their environment, but not di-
rectly with each other [20]. Stigmergy is inspired by the indirect communication
of insects like termites [11]. Stigmergy is the base for algorithms coming from
ants [9] and has widespread usage [34,33]. The self-organization and coordination
of agents is discussed in e.g. [12]. By changing and evaluating their environment,
agents influence each others behavior indirectly [17,32]. Our SRAs manipulate
their local environment based on their given rules [25]. Agents evaluate their
surroundings for manipulations by other agents which then influences their own
respective rules, which leads to indirect communication and achieving an overall
goal by self-organization via explicit, directive stigmergy [33].

3.2 MOSAIK

We give the definitions of the MOSAIK model [5] for agents and artifacts, with
focus on decentralization and stigmergy. Furthermore, we present the resources
that were created and used during our research project to realize the model’s
vision for self-organized transportation in combination with the Semantic Web.
We derive our formal definitions from Charpenay et al. [4].

Definition 1 (SRA). We define simple reflex agents as proactive components
(as opposed to artifacts) that make decisions on their own. Agents implement a
perception-thought-action cycle to influence their environment, based on defined
condition-action rules. We define an agent A as the tuple A = ⟨G, perc, appl, act⟩
where

G, set of all RDF graphs, representing the agent’s possible knowledge
perc : D′ ×G → G, perception function, based on perceived environment states,

appl : G → G, function for derivation rules,
act : G → O, function for condition-action rules,

with O, set of operations, as {GET,PUT, POST,DELETE} × U ×G

and OGET as ⟨GET, u, ∅⟩

where D′ is the set of all finite datasets (the percepts) and D is the set of all
RDF datasets (the environmental states) with D′ ⊂ D (cf. Def. 2).

Agent perception and actions are implemented via HTTP requests. Note that act
realizes actions to influence the environment via unsafe requests (PUT, POST,
DELETE) as well the agent’s perception (GET), cf. Charpenay et al. [4].

Definition 2 (Artifact). We define artifacts as reactive components (as op-
posed to agents) that form the agents’ environment following [4]. Artifacts pro-
vide different ways for interaction via HTTP request, e.g. reading the artifact’s

6 Schmid et al.

state or manipulating the artifact’s state via tasks. An internal logic defines the
deterministic reaction to interaction, but artifacts do not act autonomously. We
define the set of all artifacts as environment E = ⟨D, d0, O, transfer, update,
evolve⟩ where

D, set of all possible environment states as set of all RDF datasets
d0, the environment’s initial state

transfer : OGET ×D → D′, function for agents to retrieve a finite percept D’ ⊂ D
update : (O \OGET)×D → D, effectory function based on operations

evolve : D → D, function for the environment’s own developing state change.

Artifact behavior is a black box for agents, but the behavior’s result is observ-
able via state changes and the transfer function. State changes can be triggered
not only by agents, but also by the physical environment (e.g. machine error or
mechanical overload), represented by evolve. In our setting, artifacts are trans-
porter devices, workstations, and manipulable floor tiles.

Tab. 1 shows as a concluding comparison of agent and artifact rules, how
the presented formal definitions of Sec. 1 and 2 map to each other, and how we
implemented the rules (cf. Sec. 3.3 and 3.4).

Agents Artifacts
Rule Derivation rules State change rules
Definition appl evolve
Implementation N3 Rules without HTTP Requests in Header SPARQL-Insert-Delete
Rule Condition-action rules Request processing rule
Definition act update
Implementation N3 Rules with HTTP Requests in Header Built-in BOLD rule

Table 1: Comparison of defined rules for agents and artifacts

Interface In order for the agents to be able to communicate with the artifacts
via HTTP, we defined a common interface in MOSAIK which is based on Linked
Data Platform [30] for Read-Write Linked Data. In line with the Interaction
Affordances from Web of Things Thing Descriptions [21], agents interact with
artifacts by either reading or writing their properties, by submitting tasks3 to
them, or by watching events:

– Agents read properties by sending a GET request to the URI of the artifact,
write properties by sending a PUT request to the URI of the artifact.

– A new task can be submitted to an artifact by sending a POST request to
the task queue.

3 The difference between writing a property and submitting a task is that writing has
to happen instantaneously while the task triggers an action that can take more time.

MOSAIK: An Agent-Based Decentralized Control System With Stigmergy 7

– Events can be watched by polling the event container via GET requests.

An extended description of our interface can be found in [29]. The rules to
implement this interface on the artifact side can be found in Section 4.2. For our
scenario we use tasks for transporter movement and properties for setting the
stigmergy markers on the floor tiles; events are not used.

Fig. 2: Class diagram of the data model

Data Model In our data model (Fig. 2) we have three types of artifacts that can
be manipulated by agents: :Transporter, :Station, and :FloorTile, where
each :FloorTile has a 2D location and each :Transporter and :Station has
a reference to the floor tile they are standing on. Each :FloorTile furthermore
has stigmergy :Markers for each color that save the stigmergy value for the
color. :Transporters are moved by agents by submitting :TransporterTasks
specifying the target :FloorTile to the task container of the :Transporter.
:Transporters and :Stations may hold a :Product4. :Products and :Stations
have :Colors (which must match for a :Station to accept a :Product). We cre-
ated the ARENA vocabulary 5 to be able to use the data model from above in
RDF. We use as its prefix arena.

3.3 Implementation of agents

The data processing system Linked-Data Fu (ldfu) 6 [16] can retrieve, pro-
cess and modify Linked Data based on logical rules and production rules in
Notation3 (N3) [2]. We use N3 to implement the condition-action rules de-
scribing the behavior of the agent which controls the transporters, and in-
teract with the artifacts via RESTful interfaces. ldfu has rules of the form
{b1...bn}log:implies{h}., where we use log:implies (from the namespace
log7) to express implication [15]. These rules realize the ldfu’s internalize and
act functions to influence the agent’s internal state or send HTTP requests as
4 :Products are not manipulated by the agents directly, but merely indirectly as con-

sequence of manipulations of :Transporters or :Stations.
5 https://solid.ti.rw.fau.de/public/ns/arena#
6 https://linked-data-fu.github.io/
7 http://www.w3.org/2000/10/swap/log#

https://solid.ti.rw.fau.de/public/ns/arena#
https://linked-data-fu.github.io/
http://www.w3.org/2000/10/swap/log#

8 Schmid et al.

explained below. The antecedent of the rule, b1...bn, and the conclusion, h, are
RDF triple patterns (s, p, o) as

(s, p, o) ∈ (U ∪B ∪ V)× (U ∪ V)× (U ∪B ∪ L ∪ V)

where a given U is the set of URIs, B a set of blank nodes, and L a set of literals.
V is the set of variables that may replace constants to give patterns. The agent’s
rule set R is a finite set of rules. A conclusion h follows from a graph g ∈ G, if
h ∈ g or {b1...bn} ⊆ g.

ldfu has an internal graph (cf. g ∈ G in Def. 1) that holds the agent’s knowl-
edge in volatile storage. During each cycle, ldfu starts by trying to instantiate its
given N3 rules. ldfu may send an HTTP request to a URI given in h to interact
with its environment, either to perceive (GET) or manipulate artifact states via
unsafe requests (PUT, POST, DELETE). We use the namespaces http8 and
httpm9 to express these requests. ldfu sends safe requests (cf. act OGET in Def.
1) to all defined URIs in valid conclusions and merges the result to its knowledge
(cf. perc in Def. 1) to apply the N3 rules again (cf. appl in Def. 1) - this is done as
long as no fixpoint is reached, that is as long as there are still GET requests left
to send and new triples are inserted in ldfu’s graph. Only then, ldfu instantiates
any unsafe requests e.g. to change its environment (cf. act with O \ OGET in
Def. 1). Finally, the internal graph of ldfu is deleted and ldfu will start all over
in the next cycle. Note that ldfu does not save triples or graphs between cycles
internally (that is, ldfu has no persistent state), but has to apply results to the
environment such that they are not lost.

Example 2. ldfu5 wants to steer transporter5 to deliver the green product,
so ldfu5 needs information about the current position. To get the information
about the transporter’s tile, ldfu5’s N3 program (see below) has a rule that
states whenever ldfu5 notices that a resource ?a has a arena:tile relation
to another ressource ?b, ldfu5 will send an HTTP GET request to the URI
of ressource ?b. As ldfu5 retrieves a triple </transporters/5> arena:tile
<shopfloor/3/1> for transporter5, ldfu5 sends HTTP GET to <shopfloor/3/1>.

Follow all foor:tile properties
{

?a arena:tile ?b .
} => {

[] http:mthd httpm:GET ;
http:requestURI ?b . } .

3.4 Implementation of artifacts

BOLD10 is a simulation environment that implements artifacts according to
Def. 2. The artifacts’ states are multiple RDF graphs, collected by BOLD in
8 http://www.w3.org/2011/http#
9 http://www.w3.org/2011/http-methods#

10 https://github.com/bold-benchmark/bold-server

http://www.w3.org/2011/http#
http://www.w3.org/2011/http-methods#
https://github.com/bold-benchmark/bold-server

MOSAIK: An Agent-Based Decentralized Control System With Stigmergy 9

a single named graph representing the environment state D. Agents can read
and manipulate artifacts via HTTP requests to HTTP resources under the URI
of the named graph, as defined with transfer and update, cf. Def. 2. Each time
step of the simulation, BOLD updates its graph by defined SPARQL INSERT /
DELETE queries that take transferred states of agents into account (e.g. moving
a transporter via a task), or by the environment’s own development as defined
in evolve (e.g. creating products). We give an example of a SPARQL query that
BOLD applies for updates:

Example 3. Transporter5 was busy as ldfu5 has sent a task before. Thus,
BOLD’s graph contains that transporter5 has still status busy via
</transporters/5> arena:status arena:busy. But meanwhile transporter5
executed the movement, so no tasks are left in transporter5’s task container.
Hence, BOLD sets transporter5’s status to arena:idle.

Set transporter to idle when no task available and busy
DELETE { # delete triple with arena:busy as object

GRAPH ?transporter {
?transporter arena:status arena:busy . }

} INSERT { # insert triple with arena:idle as object
GRAPH ?transporter {

?transporter arena:status arena:idle . }
} WHERE {

?transporter a arena:Transporter ; #resource is a transporter
arena:status arena:busy ; #resource has status busy
arena:tasks ?taskContainer

FILTER NOT EXISTS { #has no tasks in container
?taskContainer ldp:contains ?task .

} };

We use BOLD as a centralized back end for our artifacts as we simulate the be-
havior and interactions among different artifacts. The (simulated) artifacts can
influence each other (e.g. transporters blocking each other) and thus a decentral-
ized simulation would continuously have to synchronize all artifact states. The
interfaces offered by the artifacts, however, are independent of each other and
thus can be easily distributed.

4 System behavior

Below, we present an overview of the agent and artifact rules from Ex. 1, to
show how ldfu5 perceives stigmergy marks and gives a task for movement to
transporter5, and how transporter5 reacts to the task. All rules including
code examples can be found in our online repository11.

11 https://github.com/wintechis/mosaik-runtime-documentation

https://github.com/wintechis/mosaik-runtime-documentation

10 Schmid et al.

4.1 Agent behavior

An ldfu program defines the agent behavior, whereas transporter, floor tiles,
products, and stations are artifacts, simulated by BOLD. The ldfu agent reads
the information provided by the artifacts and interacts with the artifacts, which
in turn respond to the agent’s tasks. Agents get a fixed entry URI of BOLD, the
root resource /, to start their exploration, and obey their rule set in Notation3
to move the transporter and build a grid of stigmergy marks.

1. GET all links that are accessible as objects in triples at root
2. GET all tiles, their marks, and the stigmergy values
3. GET all links to transporter’s neighboring tiles
4. If the transporter carries a product, GET the link to that product
5. If the transporter has a product, POST a task to move to the neighboring

tile with the lowest stigmergy value of matching color to the transporter’s
task container, thus following the descending gradient of stigmergy values

4.2 Artifact behavior

Transporters have internal reflexes as reaction to interactions from the outside,
e.g. by the agent. These reflexes are given in SPARQL, as artifacts have a per-
sistent state over the simulation time that we manipulate in a non-monotonic
way (SRAs again have no internal state over the simulation time, so mono-
tonic reasoning with N3 rules is sufficient), and handle move orders (given as
arena:TransporterTask) and the pickup and delivery of products.

1. INSERT that the transporter is busy and DELETE that the transporter is
idle, if the transporter is idle and has tasks in its task container

2. INSERT the goal tile given in a task as the transporter’s new position and
DELETE the old one, if the tile is free and adjacent

3. INSERT all neighboring tiles according to the transporter’s current position
4. INSERT that the transporter is idle and DELETE that the transporter is

busy, if the transporter is busy but has no tasks in its task container
5. DELETE all tasks that point to the transporter’s current tile (e.g. after the

transporter moved successfully to the goal tile)

The stations’ reflexes, given in SPARQL, handle the creation and consumption
of products:

1. If station’s output port is empty, INSERT a new product of other color
2. If station’s input port contains a link to a product of the station’s color,

DELETE the product

4.3 System implementation

Our implementation as well as a demo video of our system in action are available
in our online repository12. The overall system itself works as follows:
12 https://github.com/wintechis/mosaik-runtime-documentation

https://github.com/wintechis/mosaik-runtime-documentation

MOSAIK: An Agent-Based Decentralized Control System With Stigmergy 11

– ldfu executes the perception-thought-action cycle:
• ldfu GETS the given entry point, a resource that links (indirectly) to all

artifacts
• ldfu GETS the current state of its transporter, follows the link to the

transporter’s current tile, and to all neighboring tiles and the markers.
• ldfu derives that all perceived shop floor tiles without stigmergy markers

get an internal value of 1000. Thus, tiles with a smaller stigmergy value
are more attractive for ldfu to go to.

• ldfu creates new unsafe HTTP requests (i. e. POST, PUT, or DELETE),
according to derived statements in its knowledge graph.

– BOLD executes SPARQL queries periodically on its internal RDF graphs
and updates the graphs of artifacts according to the stated behavior. BOLD
checks also if the transporters have new tasks in their task containers and
will initiate to execute the tasks.

Note that ldfu and BOLD are separate, concurrent systems. BOLD manages
the shop floor as a grid with x- and y-coordinates, where all tiles are addressable
by URIs. All fields are pre-initialized with value 1000 for color marks. Tiles
outside the valid area are set to arena:nil and values to 1001, so ldfu discerns
between invalid tiles outside the shop floor, tiles that were never visited and tiles
that lead to a station, as these tiles have a smaller stigmergy mark value.

5 Evaluation

We evaluate our system compared to a simulation of agents that represents the
expected behavior, implemented in GAMA, a modeling and simulation environ-
ment for building explicit agent-based simulations that provides an integrated
environment for creating and testing distinct agents [31]. With the given algo-
rithms of our agents and artifacts from ldfu and BOLD, GAMA can simulate
multiple repetitions to show the system’s correct behavior with statistical sig-
nificance. As measurement for performance, we measure the cumulative amount
of delivered products over time (TDI). The setup is the quadratic shop floor
as presented in Sec. 2. Adjacency of transporters and stations is defined by the
3 × 3 floor tiles around them. We measure time in passed cycles during sim-
ulation, where one time step equals one cycle. We chose a cycle time of five
seconds for ldfu. All repetitions were run with randomly chosen starting points
for transporters on the shop floor. Fig. 3 shows the TDI for 300 cycles with 1000
repetitions and the average development of the systems. On average, the GAMA
simulation delivered 57.95 products after 300 cycles, where the first successful
delivery was achieved after about 23 cycles. In comparison, MOSAIK with ldfu
and BOLD delivered 22.92 products after 300 cycles, with the first delivery after
about 16 cycles. Note that the qualitative development of both systems resem-
bles a "hockey stick", showing the state of the system without and with only few
stigmergy marks (low performance), and with more marks to create direct paths
(increasing performance). We focus on the implementation of MOSAIK in the
application domain and include a general running example without comparison

12 Schmid et al.

of different agent-based approaches or parameter optimization, as this is out of
scope. For a discussion of different agent approaches in the DTS domain with a
dynamic environment, see e.g. [26].

0 50 100 150 200 250 300
cycles

0

10

20

30

40

50

60

TD
I

GAMA

(a) GAMA Simulation

0 50 100 150 200 250 300
cycles

0

5

10

15

20

TD
I

ldfu + BOLD

(b) MOSAIK with ldfu and BOLD

Fig. 3: Average behavior of our DTS compared to a simulation for the cumulative
amount of delivered items, measured over 300 cycles with 1000 repetitions.

Ex. 4 explains the interaction between multiple, distinct agents in MOSAIK:

Example 4. Consider again Fig. 1 with agents ldfu1 and ldfu5, both controlling
respectively transporter1 at (2,2) and transporter5 at (3,1). As transporter5
is carrying a blue product, ldfu5 prioritizes movement towards blue stigmergy
markers such that the delivery can be fulfilled. At (3,1), ldfu5 cannot per-
ceive the blue station at (0,2) or any marker towards the station, so the next
move might be random. However, next to transporter1, at (1,2), is a stigmergy
marker pointing towards the blue station. ldfu1 cannot perceive the station,
but perceives the adjacent marker. Agents GET all local information of their
artifacts, e.g. ldfu1 also transporter1’s floor tile or state, and meanwhile also
adjacent floor tiles and respective stigmergy marks, see no. 1 Fig. 4. ldfu1’s rules
state to replicate adjacent stigmergy markers with increased value, so it PUTs
a new blue marker with value 2 to transporter1’s current tile, see no. 2 Fig. 4
(dashed arrow in Fig. 1). Finally, see no. 3 Fig. 4, ldfu5 GETs transporter5’s
floor tile (3,1) and also the surrounding tiles including (2,2). ldfu5 GETs (2,2)
and thus the stigmergy mark of blue with value 2, which is smaller than any other
blue marker around. Hence, ldfu5 received the information, without direct com-
munication, that a blue station can be reached, when following the stigmergy
mark via the descending gradient and can decide to do so in a subsequent rule.

6 Discussion

6.1 Simulation results and system performance

Considering the different performances of delivered items, we emphasize how
GAMA works compared to BOLD and ldfu: GAMA simulates all agents and

MOSAIK: An Agent-Based Decentralized Control System With Stigmergy 13

ldfu
5

/transporters/1/
</transporters/1> a arena:Transporter;

arena:status arena:idle ;
arena:tile </shopfloor/2/2> ;

arena:tileW </shopfloor/1/2> ; ...

/transporters/5/
</transporters/5> a arena:Transporter;

arena:status arena:idle ;
arena:tile </shopfloor/3/1> ;

arena:tileSW </shopfloor/2/2> ; ...

/shopfloor/2/2
</shopfloor/2/2> a arena:Tile ;

arena:marker
</shopfloor/2/2/markers/blue>; ...
/shopfloor/2/2/markers/blue
</shopfloor/2/2/markers/blue>

arena:color arena:blue ;
 arena:value "2"^^xsd:integer .

/shopfloor/1/2
</shopfloor/1/2> a arena:Tile ;

arena:marker
</shopfloor/1/2/markers/blue>; ...
/shopfloor/1/2/markers/blue
</shopfloor/1/2/markers/blue>

arena:color arena:blue ;
 arena:value "1"^^xsd:integer .

HTTP GET
200 OK

</shopfloor/2/2> a arena:Tile ;
 arena:marker </shopfloor/2/2/markers/blue> .
</shopfloor/1/2/markers/blue> arena:color arena:blue;
 arena:value "2"^^xsd:integer .

BOLD Server

ldfu
1

HTTP GET

200 OK
arena:tile </shopfloor/2/2> ;
arena:tileN </shopfloor/1/2> .

HTTP GET
200 OK

</shopfloor/1/2> a arena:Tile ;
 arena:marker </shopfloor/1/2/markers/blue> .
</shopfloor/1/2/markers/blue> arena:color arena:blue ;
 arena:value "1"^^xsd:integer .

</shopfloor/2/2/markers/blue>
 arena:color arena:blue ;
 arena:value "2"^^xsd:integer
.

201 Created

HTTP PUT

Fig. 4: Interaction between two agents to exchange information via stigmergy

artifacts during one simulation cycle, e.g. all marks appear at the same time
and can be evaluated in the successive cycle; BOLD+ldfu are unsynchronized,
separate programs i.e. the environment’s reaction (BOLD) might take longer to
appear than the agents’ action (ldfu). Thus, agents need additional cycles as
they might miss other agents’ actions as these are not applied to the environ-
ment in time. Still, MOSAIK and GAMA show the characteristic behavior of
swarms that use the environment for positive feedback through stigmergy mark
placement [14], similar to trails in Ant Colony Optimization [9]. Our agents de-
cide autonomously, according to given rules, when to place marks to reflect the
perceived truth. Artifacts act predominantly as producers of data - although
their reflexes may also change the environment’s state (e.g. picking up products)
or its own (e.g. moving to a tile), these actions are only answers to an agent’s
stimulus.

6.2 Implementation of distributed control

MOSAIK discerns active agents (Sec. 4.1) that can perceive and interact with
their environment, and reactive artifacts (Sec. 4.2) that represent external, re-
acting parts that are controlled by agents (the environment). As we focus on a
decentralized control system, we demand agents to be stateless, use stigmergy,
and have loose coupling (see Sec. 1). Semantic technologies offer sound infer-
ence algorithms for our agents, a uniform interface for interactions, and data

14 Schmid et al.

sharing with a common understanding, implemented by RDF and RESTful in-
terfaces. Our agents use MOSAIK and semantic technologies to self-coordinate
and control, which enables other agents to take part pervasively.

Stateless agents amend each others knowledge by creating and changing per-
ceived resources, but do not save any information internally. Thus, the knowledge
of the agent population lies exclusively in the environment such that agents de-
cide only on locally available information. RESTful interfaces and Linked Data
technologies guarantee a common understanding and exchange of information.

Indirect communication has no dependence on explicit channels and protocols
between agents, but agents need a shared medium to pass information, limited
by agents’ ability to perceive the world and the representation of useful states
via stigmergy [24,20]. We use the artifacts to realize the agents’ medium. Still,
a distortion of the medium can lead to knowledge loss for the population [19].

With loose coupling between agents, the system is flexible and scalable as the
population is independent such that single agents can be added to or removed
from the population without impacting other agents. Without knowledge about
other agents or their architectures, agents do not care if perceived information
in the environment come from themselves or any other agent. Thus, new agents
can adapt and work right away, as local knowledge is shared and perceivable.
Removed agents only lead to graceful degradation of the system [3].

As we use RDF to represent the current state of a floor tile (and all other
artifacts), an agent could crawl the environment’s entire graph and thus have
knowledge about all floor tiles and stations’ locations. However, crawling the
entire graph becomes infeasible when the environment’s graph is very large and
agents have a short perception cycle. Instead, we use stigmergy to make global
information (possibly anywhere in the RDF graph, many links away) available
locally [13]. Thus, agents get up-to-date information about the applied actions of
others (or themselves before), and additionally agents can always be sure that the
available information is at least a best guess with respect to the last available
state of the environment, giving a minimum of resiliency. Unfortunately, the
price of possibly suboptimal behavior comes when local information is heavily
outdated or wrong, when the environment changed fundamentally, but can be
repaired as part of robust self-organization [26].

We conclude that we successfully built a stateless, decentralized control sys-
tem with MOSAIK building on indirect communication and loose coupling, us-
ing state-of-the-art Semantic Web technologies, with RDF as data model and
RESTful communication. We designed our system according to the properties
stated in the introduction and emphasize the merits of the Semantic Web for
our application domain of decentralized transportation systems:

– Stateless agents can be stopped and started without the risk to loose in-
ternal information, as agents write their data to the environment. Agents
can be thus be executed anywhere e.g. in an industrial cloud or on mobile
transportation devices as edge.

– Loose coupling and indirect communication make it easy to create new
agents, so the population can be scaled depending on outside requirements,
e.g. if new transportation units have to be available in short time.

MOSAIK: An Agent-Based Decentralized Control System With Stigmergy 15

– Agents do not need to crawl whole RDF graphs for perception, when all
required knowledge for decisions is locally available which reduces the overall
network traffic and leads to faster decisions.
We see the following remaining challenges for the DTS domain:

– All artifacts need HTTP interfaces with a stable connection to their agents’
network to be perceivable for agents.

– As agents regularly poll artifacts as part of the perception cycle, depend-
ing on the duration between polls, agents might not perceive artifact state
changes in time. Also, artifacts have to respond to agents which uses elec-
trical power. Thus, mobile transport units with limited battery cells might
have an increased power consumption which influences the movement range.

– Precautions have to be taken that agents can find the required local informa-
tion, otherwise the agent’s perception of the local environment degenerates
to a randomized perception search [13] of the RDF graph and gets inefficient.

7 Conclusion and outlook

We realize a self-organizing, decentralized controlled transportation system using
MOSAIK. We build on an agent-based system that uses Linked Data and stig-
mergy as technologies to implement stateless, reactive agents that rely on locally
available information, retrieved from distributed artifacts. Agents and artifacts
are described via declarative rules and communicate via HTTP. We show our
system in the context of a defined transportation scenario that works in an ab-
stract Industry 4.0 shop floor. Further usages include the control of stations,
the optimization of path building and assigning transport orders. More research
regarding the application of agent-based systems in the Semantic Web is needed,
so we identified three problems during our research that will inevitably appear
when scaling up our approach and thus must be tackled in the future:

– What is the optimal partitioning of artifacts that shall be controlled among
agents? I. e. for how many artifacts should one agent be responsible? Or
should agents only be responsible for certain aspects of the control, e.g. one
agent for following stigmergy markers and one separate agent for random
movement otherwise?

– When multiple agents act on the same artifacts, how to avoid conflicts
between the actions agents submit to an artifact (e.g. one agent send the
transporter to the left, one sends it to the right as both perceived that the
transporter currently has no task)? As solution, HTTP would allow to use
optimistic locking via the If-Unmodified-Since header, but this method is
only efficient if conflicts are rare [23].

– Agent perception is limited to adjacent floor tiles – all other global infor-
mation in the environment has to be made locally available via stigmergy.
For other use cases, a different perception radius might be more efficient,
i.e. agents could follow more link hops in the RDF graph to evaluate more
distant floor tiles. How to find the optimal radius of the local perception is
an open problem.

16 Schmid et al.

References

1. Alami, R., Fleury, S., Herrb, M., Ingrand, F., Robert, F.: Multi-robot cooperation
in the martha project. IEEE Robotics & Automation Magazine 5(1), 36–47 (1998).
https://doi.org/10.1109/100.667325

2. Berners-Lee, T.: Notation3 logic - an RDF language for the Semantic Web. https:
//www.w3.org/DesignIssues/Notation3.html

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity, Oxford
University Press (1999)

4. Charpenay, V., Käfer, T., Harth, A.: A unifying framework for agency in hyper-
media environments. In: Alechina, N., Baldoni, M., Logan, B. (eds.) Engineering
Multi-Agent Systems. pp. 42–61. Springer International Publishing, Cham (2022)

5. Charpenay, V., Schraudner, D., Seidelmann, T., Spieldenner, T., Weise, J.,
Schubotz, R., Mostaghim, S., Harth, A.: MOSAIK: A formal model for self-
organizing manufacturing systems. IEEE Pervasive Computing 20(1), 9–18 (2021).
https://doi.org/10.1109/MPRV.2020.3035837

6. Chen, B., Cheng, H.: A review of the applications of agent technology in traffic and
transportation systems. IEEE Transactions on intelligent transportation systems
11(2), 485–497 (2010)

7. Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart factory of industry
4.0: Key technologies, application case, and challenges. IEEE Access 6, 6505–6519
(2018). https://doi.org/10.1109/ACCESS.2017.2783682

8. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for
robust task allocation. IEEE Transactions on Robotics 25(4), 912–926 (2009).
https://doi.org/10.1109/TRO.2009.2022423

9. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Compu-
tational Intelligence Magazine 1(4), 28–39 (2006). https://doi.org/10.1109/MCI.
2006.329691

10. Giordani, S., Lujak, M., Martinelli, F.: A distributed multi-agent production plan-
ning and scheduling framework for mobile robots. Computers & Industrial Engi-
neering 64, 19–30 (01 2013). https://doi.org/10.1016/j.cie.2012.09.004

11. Grassé, P.: La reconstruction du nid et les coordinations interindividuelles chez
Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai
d’interprétation du comportement des termites constructeurs. Insectes Sociaux
6(1), 41–80 (Mar 1959). https://doi.org/10.1007/BF02223791

12. Hadeli, K., Valckenaers, P., Zamfirescu, C., Van Brussel, H., Germain, B., Hoelvoet,
T., Steegmans, E.: Self-organising in multi-agent coordination and control using
stigmergy. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli,
F. (eds.) Engineering Self-Organising Systems. pp. 105–123. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2004)

13. Hadeli, K., Valckenaers, P., Kollingbaum, M.J., Brussel, H.V.: Multi-agent coordi-
nation and control using stigmergy. Comput. Ind. 53(1), 75–96 (2004). https://
doi.org/10.1016/S0166-3615(03)00123-4, https://doi.org/10.1016/S0166-3615(03)
00123-4

14. Hamann, H.: Swarm Robotics: A Formal Approach, pp. 1–32. Springer Inter-
national Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-74528-2_1,
https://doi.org/10.1007/978-3-319-74528-2_1

15. Harth, A.: Interoperation between information spaces on the web. In: Grust, T.,
Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S., Patranjan, P.L.,

https://doi.org/10.1109/100.667325
https://doi.org/10.1109/100.667325
https://www.w3.org/DesignIssues/Notation3.html
https://www.w3.org/DesignIssues/Notation3.html
https://doi.org/10.1109/MPRV.2020.3035837
https://doi.org/10.1109/MPRV.2020.3035837
https://doi.org/10.1109/ACCESS.2017.2783682
https://doi.org/10.1109/ACCESS.2017.2783682
https://doi.org/10.1109/TRO.2009.2022423
https://doi.org/10.1109/TRO.2009.2022423
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1016/j.cie.2012.09.004
https://doi.org/10.1016/j.cie.2012.09.004
https://doi.org/10.1007/BF02223791
https://doi.org/10.1007/BF02223791
https://doi.org/10.1016/S0166-3615(03)00123-4
https://doi.org/10.1016/S0166-3615(03)00123-4
https://doi.org/10.1016/S0166-3615(03)00123-4
https://doi.org/10.1016/S0166-3615(03)00123-4
https://doi.org/10.1016/S0166-3615(03)00123-4
https://doi.org/10.1016/S0166-3615(03)00123-4
https://doi.org/10.1007/978-3-319-74528-2_1
https://doi.org/10.1007/978-3-319-74528-2_1
https://doi.org/10.1007/978-3-319-74528-2_1

MOSAIK: An Agent-Based Decentralized Control System With Stigmergy 17

Sattler, K.U., Spiliopoulou, M., Wijsen, J. (eds.) Current Trends in Database Tech-
nology – EDBT 2006. pp. 44–53. Springer Berlin Heidelberg, Berlin, Heidelberg
(2006)

16. Harth, A., Käfer, T.: Linked data techniques for the web of things: Tutorial. In:
Proceedings of the 8th International Conference on the Internet of Things. IOT
’18, Association for Computing Machinery, New York, NY, USA (2018). https:
//doi.org/10.1145/3277593.3277641, https://doi.org/10.1145/3277593.3277641

17. Heylighen, F.: Stigmergy as a universal coordination mechanism i: Definition
and components. Cognitive Systems Research 38, 4–13 (Jun 2016), http://www.
sciencedirect.com/science/article/pii/S1389041715000327

18. Heylighen, F.: The science of self-organization and adaptivity. The Encyclopedia
of Life Support Systems 5 (02 1970)

19. Heylighen, F.: Stigmergy as a universal coordination mechanism ii: Vari-
eties and evolution. Cognitive Systems Research 38, 50–59 (2016). https://
doi.org/https://doi.org/10.1016/j.cogsys.2015.12.007, https://www.sciencedirect.
com/science/article/pii/S1389041715000376, special Issue of Cognitive Systems
Research – Human-Human Stigmergy

20. Holland, O., Melhuish, C.: Stimergy, self-organization, and sorting in collective
robotics. Artificial Life 5, 173–202 (04 1999)

21. Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V., Kovatsch, M.: Web of
Things (WoT) Thing Description, W3C Recommendation. Retrieved October 18,
2021 (2020)

22. Klein, N.: The impact of decentral dispatching strategies on the performance of
intralogistics transport systems (2012), https://nbn-resolving.org/urn:nbn:de:bsz:
14-qucosa-147739

23. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control.
ACM Trans. Database Syst. 6(2), 213–226 (1981). https://doi.org/10.1145/319566.
319567, https://doi.org/10.1145/319566.319567

24. Parker, L.E.: Multiple Mobile Robot Systems, pp. 921–941. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_41,
https://doi.org/10.1007/978-3-540-30301-5_41

25. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall
Press, USA, 3rd edn. (2009)

26. Schmid, S., Schraudner, D., Harth, A.: Performance comparison of simple re-
flex agents using stigmergy with model-based agents in self-organizing trans-
portation. In: 2021 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C). pp. 93–98 (2021). https:
//doi.org/10.1109/ACSOS-C52956.2021.00071

27. Schmidt, T., Reith, K.B., Klein, N., Däumler, M.: Research on Decentralized Con-
trol Strategies for Automated Vehicle-based In-house Transport Systems – a Sur-
vey. In: Logistics Research. p. 13:10 (2020). https://doi.org/10.23773/2020_10

28. Schraudner, D.: Stigmergic multi-agent systems in the semantic web of things. In:
Verborgh, R., Dimou, A., Hogan, A., d’Amato, C., Tiddi, I., Bröring, A., Mayer,
S., Ongenae, F., Tommasini, R., Alam, M. (eds.) The Semantic Web: ESWC 2021
Satellite Events. pp. 218–229. Springer International Publishing, Cham (2021)

29. Schraudner, D., Harth, A.: A RESTful Interaction Model for Semantic Digital
Twins. In: Proceedings of the Third International Workshop on Semantic Digital
Twins co-located with the 19th Extended Semantic Web Conference (ESWC 2022)
(2022)

30. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0. W3C Recommen-
dation, February 26 (2015)

https://doi.org/10.1145/3277593.3277641
https://doi.org/10.1145/3277593.3277641
https://doi.org/10.1145/3277593.3277641
https://doi.org/10.1145/3277593.3277641
https://doi.org/10.1145/3277593.3277641
http://www.sciencedirect.com/science/article/pii/S1389041715000327
http://www.sciencedirect.com/science/article/pii/S1389041715000327
https://doi.org/https://doi.org/10.1016/j.cogsys.2015.12.007
https://doi.org/https://doi.org/10.1016/j.cogsys.2015.12.007
https://doi.org/https://doi.org/10.1016/j.cogsys.2015.12.007
https://doi.org/https://doi.org/10.1016/j.cogsys.2015.12.007
https://www.sciencedirect.com/science/article/pii/S1389041715000376
https://www.sciencedirect.com/science/article/pii/S1389041715000376
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-147739
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-147739
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/319566.319567
https://doi.org/10.1007/978-3-540-30301-5_41
https://doi.org/10.1007/978-3-540-30301-5_41
https://doi.org/10.1007/978-3-540-30301-5_41
https://doi.org/10.1109/ACSOS-C52956.2021.00071
https://doi.org/10.1109/ACSOS-C52956.2021.00071
https://doi.org/10.1109/ACSOS-C52956.2021.00071
https://doi.org/10.1109/ACSOS-C52956.2021.00071
https://doi.org/10.23773/2020_10
https://doi.org/10.23773/2020_10

18 Schmid et al.

31. Taillandier, P., Gaudou, B., Grignard, A., Huynh, Q.N., Marilleau, N., Cail-
lou, P., Philippon, D., Drogoul, A.: Building, composing and experimenting
complex spatial models with the gama platform. GeoInformatica 23(2), 299–
322 (Apr 2019). https://doi.org/10.1007/s10707-018-00339-6, https://doi.org/10.
1007/s10707-018-00339-6

32. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artificial life 5, 97–116
(02 1999). https://doi.org/10.1162/106454699568700

33. Tummolini, L., Castelfranchi, C.: Trace signals: The meanings of stigmergy. In:
Weyns, D., Parunak, H.V.D., Michel, F. (eds.) Environments for Multi-Agent Sys-
tems III. pp. 141–156. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

34. Van Dyke Parunak, H.: A survey of environments and mechanisms for human-
human stigmergy. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) En-
vironments for Multi-Agent Systems II. pp. 163–186. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006)

35. Zedadra, O., Jouandeau, N., Seridi, H., Fortino, G.: Multi-agent foraging: state-
of-the-art and research challenges. Complex Adaptive Systems Modeling 5(1), 3
(Feb 2017). https://doi.org/10.1186/s40294-016-0041-8, https://doi.org/10.1186/
s40294-016-0041-8

https://doi.org/10.1007/s10707-018-00339-6
https://doi.org/10.1007/s10707-018-00339-6
https://doi.org/10.1007/s10707-018-00339-6
https://doi.org/10.1007/s10707-018-00339-6
https://doi.org/10.1162/106454699568700
https://doi.org/10.1162/106454699568700
https://doi.org/10.1186/s40294-016-0041-8
https://doi.org/10.1186/s40294-016-0041-8
https://doi.org/10.1186/s40294-016-0041-8
https://doi.org/10.1186/s40294-016-0041-8

	MOSAIK: An Agent-Based Decentralized Control System with Stigmergy For A Transportation Scenario

