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Abstract. When clinicians perform tasks involving clinical reasoning,
such as the diagnosis or treatment of diabetes, multiple forms of reason-
ing, including deduction and abduction, are often employed. Ontologies
designed to provide a foundation for clinical decision support systems
have been encoded based on Clinical Practice Guidelines. Nevertheless,
existing approaches solely allow deductive rules for clinical reasoning,
with ontologies too large or complex to support tractable abductive rea-
soning. We follow existing guidelines and standards to design the Di-
abetes Pharmacology Ontology, a concise ontology – an ontology engi-
neered by adhering to the Minimum Information to Reference an Exter-
nal Ontology Term principle and following an agile design approach. We
claim that use cases that incorporate multiple forms of reasoning, such
as those aimed at supporting both deduction and abduction, are better
supported by concise, rather than complete and comprehensive, ontolo-
gies. We demonstrate how Personal Health Knowledge Graphs have been
implemented using our ontology and evaluate the abductive capability
of modules included with our ontology. We openly publish the resources
that have resulted from this work, as listed below. This work demon-
strates how multimodal semantic reasoning – deduction and abduction
– can be used to emulate tasks involving clinical reasoning and thus has
the potential to support practitioners with clinical decision-making.

– Ontology: https://purl.org/twc/dpo/ont/diabetes_pharmacology_ontology.ttl
– Bioportal: https://bioportal.bioontology.org/ontologies/DPCO
– URL: https://tetherless-world.github.io/diabetes-pharmacology-ontology
– Documentation: https://bit.ly/dpo_documentation
– GitHub: https://github.com/tetherless-world/diabetes-pharmacology-

ontology
– License: https://www.apache.org/licenses/LICENSE-2.0
– DOI: https://10.5281/zenodo.7454721
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1 Introduction

The use of clinical reasoning, a complex process involving cognition, meta-
cognition, and discipline-specific knowledge [25], is required for clinicians to com-
plete complex medical tasks involving information comprehension and decision-
making. Although the intricacies of how humans perform clinical reasoning is
an ongoing topic encompassing much debate [30], it is clear that multiple dis-
tinct types of inference are used [2]. While the dialectics of logical philosophy is
beyond the scope of this article, we find that the Select and Test Model (ST-
Model), in which an expert chooses a plausible hypothesis that is subsequently
confirmed or falsified through testing, is a practical epistemological framework
for our research on medical reasoning [39,44].

Since the ST-Model presents the cyclic and back-and-forth nature of medi-
cal problem-solving tasks in a manner resembling hierarchical decomposition,
a divide-and-conquer approach employed by humans for solving large prob-
lems [27], we believe that for the purpose of our research, the ST-Model is rep-
resentative enough of the type of reasoning a clinician may employ. To create a
clinical decision support system capable of employing ST-Model-like reasoning,
we initially focus on the facilitation of deduction and abduction.

We commence this research by incorporating domain-specific and semantic
standards to design a knowledge representation that supports both types of
reasoning. We present a guideline and standards-driven approach for crafting a
clinical ontology. Given a specific use case for the diagnosis and treatment of type
2 diabetes mellitus, we design the Diabetes Pharmacology Ontology (DPO).

1.1 Motivation

While there are multiple factors that come into play when attempting to predict
reasoning performance, empirically it has been shown that reasoning over large
and complex ontologies can be very time-consuming [26]. Despite such concerns,
existing diabetes ontologies focus on completeness and encoding as much knowl-
edge as possible [15,16]. These ontologies solely support deduction to accomplish
clinical reasoning tasks such as differential diagnosis or therapy planning.

When a clinician reasons over patient information to perform clinical decision-
making, multiple forms of reasoning are used, including abstraction, deduction,
abduction, and induction [2]. Non-monotonic reasoning problems involving ab-
duction are notoriously more challenging to solve than their monotonic coun-
terparts [23] and have greater considerations in terms of tractability [12,13,40].
Therefore, this work is motivated by the need of supporting multiple forms of
reasoning to better emulate how clinicians perform clinical reasoning tasks.

1.2 Contribution and Claims

The main contribution of this article is that we develop an approach for semantic
knowledge representation that supports multimodal reasoning and demonstrate
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how the approach can be used for clinical decision-making by publishing a con-
cise, FAIR-compliant ontology, the Diabetes Pharmacology Ontology (DPO),
which is used in our approaches for differential diagnosis and therapy planning.

Due to performance and tractability concerns, it becomes important to con-
sider the size and complexity of an ontology that will be used in any setting,
which is often more important to consider when it is to be used for multimodal
reasoning. We are able to support our use case involving clinical reasoning that
incorporates multiple forms of reasoning by creating a concise, rather than com-
plete and comprehensive, ontology. This is achieved by following the Minimum
Information to Reference an External Ontology Term (MIREOT) [8] principle
when linking to external vocabularies and using an agile [24] design strategy to
create both an ontology and a Personal Health Knowledge Graph (PHKG) [20].
An agile approach allows us to meet the needs of our use case while limiting the
number of concepts included, thus limiting the size of our ontology. Therefore,
we define a concise ontology as one that adheres to both the MIREOT principle
as well as an agile design methodology, where the minimum required amount
of information for external classes is included and concepts in the ontology are
limited to those required by a given use case.

One way we keep our ontology concise is by only including the pharmacother-
apy factors and antihyperglycemic treatments found in Table 9.21 of Chapter
9 [7] of the ADA Guidelines, omitting other therapies from our ontology. In
Section 8, we discuss the importance of conciseness as determined from the
evaluation of abductive capability presented in Section 7 by answering a set of
competency questions using the AAA Abox abduction solver [38]. Our ontology
and PHKG support both deductive and abductive reasoning and can demon-
strate how semantic reasoning can be used to emulate clinical decision-making
tasks, including differential diagnosis and therapy planning.

Our ontology is based on existing standards and best practices. We leverage
content from the American Diabetes Association (ADA) Clinical Practice Guide-
lines [3] to inform specific branches of the ontology. Additionally, we consider
Ontology Design Patterns (ODPs) [18], the HCLS dataset specification [19], and
the Data on the Web Best Practices [29] when designing, scoping, and anno-
tating our ontology. The Fast Healthcare Interoperability Resources (FHIR) [4]
specification is a standard for representing clinical information that employs a
composition and constraint-based modeling approach. In Section 5, we demon-
strate how a PHKG is created using either FHIR or an upper ontology.

The resources resulting from this research are FAIR [45], based on guiding
principles for the discovery, use, and reuse of data, which we demonstrate by
evaluating our ontology on principles for developing computational biomedical
knowledge (CBK) infrastructure [32]. The ontology and PHKGs are published
and readily available, use standard vocabulary, and are adequately documented.

1 For easy reference, we include this table as supplementary material: tetherless-
world.github.io/diabetes-pharmacology-ontology/#supplementary-material

https://tetherless-world.github.io/diabetes-pharmacology-ontology/#supplementary-material
https://tetherless-world.github.io/diabetes-pharmacology-ontology/#supplementary-material
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2 Related Work

2.1 Existing Diabetes Ontologies

To support Clinical Decision Support Systems (CDSS) with the diagnosis and
treatment of diabetes, an ontological approach for incorporating recommenda-
tions from computerized Clinical Practice Guidelines is proposed [1]. While a
relatively simple flat ontology (as opposed to hierarchical) is created including
classes for diagnoses, lab tests, patient information, risk factors, and symptoms,
diagnostic and therapy planning rules are written in SWRL [22], allowing for the
categorization of patients in terms of both type 1 and type 2 prediabetes and di-
abetes. The concepts included in this ontology are similar to the top-level classes
that we include in our ontology, but we expand upon each concept hierarchically,
resulting in a richer representation.

Another ontology including SWRL rules for diabetes diagnosis is the Dia-
betes Diagnosis Ontology (DDO). This ontology was designed with the goal of
systematically developing complete ontologies for the diagnosis of diabetes mel-
litus [15], resulting in the creation of comprehensive OWL2 diabetes knowledge
representation interoperable with OBO Foundry [43] ontologies. A major limi-
tation of DDO is the absence of support for therapy planning, addressed by the
Diabetes Mellitus Treatment Ontology (DMTO) [16], an extension of DDO.

DMTO is an OWL 2 ontology based on the SHOIQ(D) description logic in
which type 2 diabetes treatment plans are modeled based on CPGs which in-
cludes SWRL rules for diagnosis and treatment [16]. Unfortunately, when trying
to run the rules ourselves, we ran into several errors. Furthermore, while DMTO
is indeed a comprehensive ontology, resulting in great domain coverage, an on-
tology of this size is not compatible with timely abductive reasoning. Despite
the inclusiveness of DMTO, it does not meet all the requisites to abductively
plan treatments for patients, such as direct links from treatments to associated
pharmacotherapy factors and appropriately represented concept restrictions to
trigger the abductive reasoner used in our approach.

2.2 Clinical Practice Guidelines

Clinical Practice Guidelines (CPGs) are collections of statements intended to op-
timize patient care by assisting the understanding of factors involved in complex
medical decision-making, including potential benefits, harms, or alternatives of
a specific medical decision, as well as demographic and socioeconomic consider-
ations [11]. For a set of guidelines to be trustworthy, they should be developed
by experts from various associated disciplines through a systematic review of
existing literature, should provide evidence, clear explanations, and quality rat-
ings for recommendations, and should be revised appropriately in light of new
findings. For this work, we leverage an existing CPG, the Standards of Medical
Care in Diabetes [3] by the American Diabetes Association (ADA).
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3 Ontology Design Approach

We now describe our design methodology for creating DPO, design-related scop-
ing requirements, and our approach to linking external vocabularies.

3.1 Use Case

DPO arose from the need for a structured vocabulary to aid in clinical decision-
making. We consider a use case with the goal of supporting clinicians with clin-
ical reasoning tasks, such as differential diagnosis, therapy planning, or plan
critiquing. We ground this in the setting where patients have elevated blood
glucose levels.

A primary requirement of this use case is that the support provided should
emulate the type of rationality a clinician is likely to apply. In particular, a
proof of concept is required, where it must be demonstrated that the approach
can support multimodal reasoning. We find that by adhering to the ST-Model,
we can approximate human clinical decision-making involving multiple forms of
reasoning. Inversely, the proof of concept requirement nullifies the requirement
that complete coverage is realized. It is not necessary to demonstrate that any
scenario in a given domain is addressable, but rather support for such content
is possible with the proper extensions.

While complete domain coverage is not necessary, the use case does re-
quire that provided recommendations for the portion covered should align with
domain-specific standards. As an elevated blood glucose level is an indicator of
prediabetes or diabetes, a scoping requirement is that the technology created
should center on these medical conditions. In particular, we focus on type 2
diabetes mellitus and leverage the well-used ADA Standards of Care Diabetes
CPG. Since clinical decision-making employs multiple forms of reasoning and
earlier work has been conducted involving the encoding of CPGs in ontologies,
we found that the use of Semantic Web technologies was a natural choice for
meeting these initial requirements.

Due to privacy considerations and to avoid HIPAA violations [42], the use
of actual patient data is not a requirement for this use case. Nevertheless, it is
required that the data used should resemble actual patient data. We find that
a NetCE course [34] includes relevant case studies on diabetes and is a good
reference point for constructing hypothetical patients.

3.2 Design Methodology

While an initial use case may be in mind when designing an ontology, it is ar-
guably impossible to know all the future uses the ontology will have. We provide
an initial set of concepts in our extensible ontology while remaining open to
including additional concepts that may be needed as a consequence of growing
use and reuse. Two ontology design approaches that allow for modular updates
include the Agile [24] & eXtreme [35,5] Design (XD) methodologies. Approaches
involving modular updates are often referred to as modular ontology design [21].
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When using an agile design approach, simplicity is encouraged, especially
when representing rudimentary ideas. Essential features should be implemented
foremost, while additional features can be included in the future. Inspired by
Agile, the XD methodology asserts that ontologies should only contain concepts
and properties that are essential for the particular task for which the ontology
is being designed. Extensions of an XD ontology typically transpire iteratively,
where further improvements are incorporated by considering the needs of the
end-user and involving the customer in the design process.

3.3 Design Requirement-Related Scoping

A design requirement is that our ontology must leverage a CPG so that intelligent
systems that use the ontology can follow guideline recommendations. We scope
our study to clinical cases relevant to type 2 diabetes mellitus. Therefore, the
Standards of Medical Care in Diabetes by the American Diabetes Association
(ADA) became an apparent choice of a CPG to use. Chapter 9 of the ADA
guidelines [7], titled Pharmacologic Approaches to Glycemic Treatment, contains
treatment information and factors that can be leveraged for diabetes therapy
planning. Therefore, to create a concise rather than complete ontology, we scope
the therapies and pharmacotherapy factors included in our ontology to those
mentioned in this article, omitting additional diabetes-associated factors and
therapies mentioned in the literature. For example, Licogliflozin and Sotagliflozin
are SGLT2 inhibitors that we do not include in our ontology. Diagnostic factors
and clinical measurements included in the ontology are scoped based on the
diabetes-related NetCE case studies. To test the representation capability of the
ontology, three of these case studies (patients K, H, and B in [34]) are used to
create example patients.

3.4 Linking External Vocabularies

To make an ontology interoperable with other ontologies, it is necessary to
link to external vocabularies. Unfortunately, importing entire ontologies using
owl:import statements often results in unnecessarily large overhead, especially
when the ontologies being imported have a substantial number of concepts, often
including many concepts that are not directly applicable. It is not uncommon
for an ontology to import other ontologies which are not even used.

The inclusion of owl:import statements introduces the risk of vastly increas-
ing the size of an ontology, saturating it with unnecessary information, especially
when multiple high-level ontologies are imported or an ontology is imported for
the use of a single class or property. Too many classes can have a negative impact
on reasoning complexity and computation time, especially with non-monotonic
forms of reasoning, such as abduction.

Therefore, for our use case involving multimodal reasoning, it is necessary
to minimize the number of external concepts included. The MIREOT guidelines
provide specifications for the minimum amount of information required when
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including concepts from external ontologies. Rather than importing entire on-
tologies, only necessary concepts should be included. The MIREOT guidelines
state that, for an external concept to be consistently referenced, the only required
information includes the ontology namespace, the URI for the specific term being
imported, and the URI for the superclass of the term being imported [8].

We adopt this approach in terms of directly including external concepts in
our ontology as well as the minimal set of information required for reference.
When including a superclass of a linked concept, in the cases that (i) the su-
perclass is not directly linked to a term in the ontology, (ii) is not a subclass of
another linked concept, or (iii) is a top-level class, we assign the superclass to
be a subclass of the concept dpo:ExternalClass. By doing so, we reduce the
hierarchical clutter by putting all external classes under a single branch.

In addition to the minimal set, we also include the labels of external con-
cepts as also recommended in the MIREOT guidelines, simply to aid in read-
ability. The external concepts are directly linked to internal concepts using
owl:equivalentClass. For an external concept that includes a definition, we as-
sign the definition to the linked internal concept. For all definitions acquired
from external resources, we append a definition source attribution to the end of
the definition string that references the external resource, concept, or URL that
the definition is adopted from.

4 Diabetes Pharmacology Ontology

To address the needs of our use case, it is necessary to include in our ontol-
ogy diagnostic factors, such as patient characteristics and test findings, ther-
apies, and pharmacotherapy factors. Shown in Figure 1 is a simplified repre-
sentation of DPO, depicting key concepts that extend from the root concept,
dpo:TherapyPlanningComponent, and some of their subclasses.

While additional classes extend from some of the concepts shown, due to
space considerations we omit several branches of the ontology and limit this dia-
gram to extend up to three concepts from the root. The three top-level branches
are dpo:PharmacotherapyFactor, dpo:DiagnosticFactor, and dpo:Therapy.
All other branches of the ontology extend from these top-level concepts. In ad-
dition to the existing concepts included in our ontology, DPO is extensible by
allowing the incorporation of new classes as a subclass of an existing concept.

4.1 Pharmacotherapy Factor

Organized in the ADA CPG Table 9.2 are type 2 diabetes treatments based on
drug-specific factors. Such factors, including efficacy, weight change association,
cost, and risk correlations for several medical conditions or diseases, correspond
to the columns of Table 9.2. The dpo:PharmacotherapyFactor branch is based
off of this table, where the above-mentioned columns are used to form the imme-
diate subclasses of dpo:PharmacotherapyFactor. In turn, potential values for
each entry of a column informed the terms included under each of these concepts.



8 S. Rashid et al.

Fig. 1. DPO is rooted at dpo:TherapyPlanningComponent, which has three
main branches. These top-level concepts include dpo:PharmacotherapyFactor,
dpo:DiagnosticFactor, and dpo:Therapy. Diagnostic factors are split into
dpo:PatientCharacteristic, shown in light red, and dpo:Measurement, shown in light
orange. Pharmacotherapy factors are shown in light blue and therapies in light green.

In addition to the factors mentioned above, Table 9.2 also incorporates a col-
umn titled “Additional Considerations." This column covers additional therapy
considerations, such as FDA Black Box warnings [10] as well as additional known
risks and reactions. To constrain the scope of the initial implementation of DPO,
we have not yet included in our ontology the considerations from this column.
This extension may be considered as part of future work. Pharmacotherapy fac-
tors are mapped to external classes from National Cancer Institute Thesaurus
(NCIT) [28]. In particular, NCIT is used due to its broad coverage and since
most of the concepts included in dpo:PharmacotherapyFactor is not included
in the other external vocabularies we are linking.

4.2 Therapy

The rows of the ADA CPG Table 9.2 comprise of categorizations of therapies
commonly used to treat type 2 diabetes. These categorizations are leveraged
to inform the top-level therapies we included in our ontology. While there are
many drugs associated with these therapy categorizations, it is not our intention
to encode an exhaustive list of therapies. Instead, we limit our scope of therapies
to include only those mentioned in Table 9.2. Therapy concepts are mapped to
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external classes from NCIT, Chemical Entities of Biological Interest (ChEBI) [9],
and Logical Observation Identifiers Names and Codes (LOINC) [33].

4.3 Diagnostic Factor

A NetCE course [34] includes several diabetes-related case studies. To test the
application of our work on hypothetical diabetes patients, three case studies
included in this course are semantically encoded to create a PHKG for each pa-
tient, as described in Section 5. These case studies detail the attributes of each
patient, including demographic information, treatment history, existing condi-
tions, and symptoms. The case studies also include lab measurements of the
patients taken at specific visits. The dpo:DiagnosticFactor branch is created
based on the NetCE case studies, and is separated into two main branches,
dpo:PatientCharacteristic and dpo:TestFinding.

Concepts in the dpo:PatientCharacteristic branch, corresponding to pa-
tient attributes, are mapped to external classes from NCIT, HP [41], and the
Symptom ontology2. The concepts in the dpo:TestFinding branch are based on
the NetCE lab measurement, mostly corresponding to glucose and cholesterol-
related readings. Test finding concepts are mapped to external classes from
NCIT, the Symptom ontology, LOINC, and EFO [31].

5 Personal Health Knowledge Graph

A Personal Health Knowledge Graph (PHKG) is a knowledge resource linking
a patient’s relevant medical information and personal data, typically for use in
personalized health applications [20]. To test the applicability of our ontology, we
have created PHKGs for several hypothetical patients based on diabetes-related
NetCE case studies. A portion of one such PHKG is depicted in Figure 2.

In addition to the use of concepts from DPO, our PHKGs leverage an upper
ontology, such as the Semanticscience Integrated Ontology (SIO) [14]. We have
also created a PHKG based on FHIR [4] rather than SIO for demonstration
purposes and to provide support for a healthcare-related standard specification.
Nevertheless, we find that the use of SIO results in a much more straightfor-
ward and concise representation. Both representation formats are included in
our GitHub repository3. The file titled maria.ttl is the FHIR representation
while the other files leverage SIO.

When using SIO, the patient is encoded as an instance of sio:Patient that
has instances of attributes linked using sio:hasAttribute. Each attribute exists
at an instance of a timepoint, linked using sio:existsAt, corresponding to the
visit at which an attribute was recorded. Patient attributes include symptoms,
conditions, demographic information, and measurement values. Deductive rules
in the ontology can be used to make inferences regarding the recorded attributes.
2 https://bioportal.bioontology.org/ontologies/SYMP/
3 https://github.com/tetherless-world/diabetes-pharmacology-

ontology/tree/main/kb

https://bioportal.bioontology.org/ontologies/SYMP/
https://github.com/tetherless-world/diabetes-pharmacology-ontology/tree/main/kb
https://github.com/tetherless-world/diabetes-pharmacology-ontology/tree/main/kb
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Fig. 2. A Personal Health Knowledge Graph includes instances of patients. A top-
level ontology like SIO along with concepts in DPO is used for representing patient
attributes. Deductive rules from the ontology are used to infer attribute categorizations.
Ontology classes are shown as ellipses. External classes are pink while internal classes
are color-coded as described in Figure 1. Instances are shown as yellow diamonds.

One such rule is depicted towards the bottom of Figure 2, where a hemoglobin
A1C (HbA1c) measurement is categorized to be in the diabetes range. Such
categorizations can be used to trigger abductive hypotheses. One may ask the
question, “What are some explanations for why the patient’s HbA1c is in the
diabetic range?" The encoding of this rule is discussed in the following section.

6 Application: Supporting Abductive Reasoning

The abductive reasoning problem arises when a knowledge base K does not entail
an observation O, that is K ̸|= O, resulting in the search for an explanation E
that when included with K would result in the entailment of the observation,
K∪E |= O [37]. For a sufficient solution, several constraints need to be considered,
including consistency (K∪E ̸|= ⊥), minimality (E is a ‘minimal explanation’ for
O), relevance (E ̸|= O), and explanatoriness (K ̸|= O, E ̸|= O) [17].
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An existing approach demonstrates how abduction can be utilized to address
a use case related to the diagnosis of diabetes mellitus-related conditions [36].
While this work presents how rules based on symptoms can be formed to ab-
ductively arrive at diagnoses, the described ontology is not implemented. Never-
theless, this work provides examples of abductive rule representation that have
influenced our approach. In fact, we leverage the AAA ABox abduction solver
by the same authors [38] as the abductive inference engine we employ.

Simple abductive explanations arise through subsumption. To entail the ob-
servation that an instance is of type a class, the instance could be one of the
subclasses of that class. Therefore, an approach for representing possible abduc-
tive explanations is by assigning possible hypotheses as a union of classes. For
example, we can define dpo:DiabetesHbA1cLevel to be equivalent to the union
of classes that serve as potential explanations, as listed below.

dpo:DiabetesHbA1cLevel rdf:type owl:Class ;
owl:equivalentClass

[ rdf:type owl:Class ;
owl:unionOf (

dpo:TherapyNotEffective
dpo:NotComplyingWithTherapy
dpo:InsufficientExercise
dpo:HighSugarDiet ) ] ;

rdfs:subClassOf dpo:Measurement .

As part of our resources, we include in our GitHub repository4 modules writ-
ten in RDF on which to apply abductive queries. Due to the tractability limita-
tions associated with abductive reasoning [40], we recommend the use of specific
modules for targeted abductive queries rather than running the reasoner over
the entire ontology. Nevertheless, if time and computational capability are not
a deterrent, the modules can be combined with the ontology and/or additional
knowledge to result in a more comprehensive set of explanations.

Included is a module for an example scenario involving unexpected weight
gain, as well as modules related to the use case discussed in this article, such as
a diagnostic module, HbA1c module, and therapy module. The therapy module
represents specific antihyperglycemic medications prescribed based on pharma-
cotherapy factor considerations. We further include abductive queries for these
modules in the form of commands5 that can be sent to the abduction solver.

7 Evaluation

A recent article [32] promotes three guiding principles for developing compu-
tational biomedical knowledge (CBK) and its associated infrastructure; CBK
4 https://github.com/tetherless-world/diabetes-pharmacology-

ontology/tree/main/ont/modules
5 https://github.com/tetherless-world/diabetes-pharmacology-

ontology/blob/main/abduction_commands

https://github.com/tetherless-world/diabetes-pharmacology-ontology/tree/main/ont/modules
https://github.com/tetherless-world/diabetes-pharmacology-ontology/tree/main/ont/modules
https://github.com/tetherless-world/diabetes-pharmacology-ontology/blob/main/abduction_commands
https://github.com/tetherless-world/diabetes-pharmacology-ontology/blob/main/abduction_commands
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should be FAIR, trustworthy, and open. We use these principles to evaluate the
DPO, which we include in the Supplementary Materials section of our website.6

In addition to evaluating how our ontology met the principles for developing
CBK, we evaluate the abductive reasoning support of our approach. To do so,
we compile a set of competency questions that we test whether we can answer
using abduction. These competency questions are listed as follows.

C1 What are some causes for an HbA1c level in the diabetes range?
C2 How can we explain the patient having insufficient exercise?
C3 Why might the patient not be talking a medication?
C4 What therapies have high efficacy?
C5 What therapies have potential for weight loss?
C6 What therapies have potential atherosclerotic cardiovascular disease benefit?

The first 3 questions are used to test diagnostic capability while the latter
3 relate to therapy planning. To test these competency questions, a Dell laptop
with a Ubuntu 20.04.5 LTS operating system is used. The computer has an Intel
Core i7-8550U CPU running at 1.8 GHz with 4 cores and 8 threads. The laptop
contains 16 GB of RAM. Version 0.11 of the AAA Abox abduction solver7 is
used, with the negations and avoid loops parameters set to true, the abduction
approach set to reduction, and the timeout set to 120 seconds.

Module Concepts Roles Individuals TBox ABox
hba1c 13 1 7 18 7

exercise 12 1 2 21 2
compliance 18 1 2 28 2

therapy 117 1 81 230 115
Table 1. Modules used to evaluate competency questions. The columns correspond
to ontology details returned by the AAA solver. “Concepts” refers to the number of
classes in the module. “Roles” refers to the number of properties. “Individuals” refers to
the number of instances. “Tbox” refers to the number of terminological axioms. “Abox”
refers to the number of individual-associated assertions.

We use 4 modules with a varying number of concepts and individuals, as
shown in Table 1. A unique module is used for each diagnostic question, while
a single therapy module is used for the therapy-related questions. Abducibles
are particular concepts, roles, or individuals that are provided to the reasoner
to limit the reasoning space. Given the complete set of relevant abducibles, an
abductive query can be run without providing any abducibles, by providing all
of the relevant abducibles, or by segmenting the abducibles and running multiple
queries using each of the segments. When creating segments, we keep necessary

6 https://tetherless-world.github.io/diabetes-pharmacology-
ontology/#supplementary-material

7 Available here: https://dai.fmph.uniba.sk/~pukancova/aaa/

https://tetherless-world.github.io/diabetes-pharmacology-ontology/#supplementary-material
https://tetherless-world.github.io/diabetes-pharmacology-ontology/#supplementary-material
https://dai.fmph.uniba.sk/~pukancova/aaa/
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abducibles in all of the segments, such as those appearing in the observation,
and split the rest. For this evaluation, we create at most 3 segments per query.

The depth of an explanation corresponds to the number of assertions that
can appear in an explanation. We test each query with depths of 1, 2, and 3.
For a depth n, we record the time tn in seconds that it takes to find the set of
explanations at that depth. If the set is not found within the time limit, which we
have set to 2 minutes, the query times out, denoted using T/O. We also record
the number of explanations found. The results of this evaluation are shown in
Table 2. The full set of evaluation output logs are available on our GitHub.8

8 Discussion

We briefly discuss the results of the evaluation, the impact of this work, some
limitations, and future research directions.

8.1 Results

We have evaluated the capability of competency questions to be answered ab-
ductively using modules included with our ontology. While the therapy-related
queries did time out when specifying a depth of 3, upon examining the explana-
tions provided, we found that for all of the modules, the set of expected expla-
nations could be obtained using a depth of 2. Depending on the representation
of the module, the expected explanations could even be reached using a depth of
1. Therefore, we have demonstrated that our approach allows us to abductively
answer competency questions related to diagnosis and therapy planning.

These results demonstrate the importance of conciseness when performing
abductive reasoning. Modules with fewer concepts allowed for abductive answers
to be obtained faster and to a greater depth. We also found that greater depth
calculations could be obtained by dividing the set of abducibles into segments.
However, this requires knowledge of the set of relevant abducibles. Nevertheless,
for simpler modules, such as the diagnostic modules, we can obtain the expected
results without specifying abducibles, again showing the value of conciseness.

8.2 Scientific Impact

We have published an original ontology as well as PHKGs that exemplify how the
ontology can be used with an upper ontology or as a FHIR adherent representa-
tion. We have introduced our resources in this article and have included further
descriptions on a dedicated website. While other diabetes ontologies based on
CPGs do exist, our work is innovative and advances the state-of-the-art in that
we consider both deductive and abductive capabilities in its design. Unlike other
diabetes ontologies, we focus on the creation of a concise rather than comprehen-
sive ontology to better support tractable abductive reasoning. Our contributions
8 https://github.com/tetherless-world/diabetes-pharmacology-

ontology/tree/main/evaluation_results

https://github.com/tetherless-world/diabetes-pharmacology-ontology/tree/main/evaluation_results
https://github.com/tetherless-world/diabetes-pharmacology-ontology/tree/main/evaluation_results
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CQ #Segments #Abducibles/Segment Depth t1(s) t2(s) t3(s) #Exp. Module
C1 0 ∞ 1 1.01 N/A N/A 4 hba1c

2 1.01 14.2 N/A 9
3 1.14 14.65 T/O 9

1 18 1 0.91 N/A N/A 4
2 1.04 11.52 N/A 9
3 0.92 11.67 T/O 9

2 12 3 1.44 6.04 49.04 9
C2 0 ∞ 1 0.39 N/A N/A 3 exercise

2 0.38 0.66 N/A 3
3 0.39 0.66 1.33 3

1 9 1 0.38 N/A N/A 3
2 0.36 0.45 N/A 3
3 0.39 0.49 0.49 3

C3 0 ∞ 1 0.49 N/A N/A 6 compliance
2 0.46 0.93 N/A 6
3 0.58 0.94 2.23 6

1 11 1 0.48 N/A N/A 6
2 0.38 0.48 N/A 6
3 0.57 0.57 0.57 6

C4 0 ∞ 1 T/O N/A N/A 0 therapy
1 26 1 8.26 N/A N/A 14

2 8.47 T/O N/A 14
2 13.5 2 7.64 T/O∗ N/A 14
3 9.33 2 7.95 49.52 N/A 14

3 7.4 48.75 T/O 14
C5 0 ∞ 1 T/O N/A N/A 1 therapy

1 26 1 7.76 N/A N/A 11
2 7.25 T/O N/A 12

2 13.5 2 6.86 T/O N/A 12
3 9.33 2 6.59 48.42 N/A 11

3 7.07 48.95 T/O 12
C6 0 ∞ 1 T/O N/A N/A 0 therapy

1 26 1 6.96 N/A N/A 7
2 6.75 T/O N/A 8

2 13.5 2 5.68 T/O N/A 9
3 9.33 2 6.1 51.53 N/A 7

3 6.07 50.51 T/O 12
Table 2. Abductive competency query results. For multiple segments, the number of
abducibles per segment is shown as an average, and the computation times and number
of unique explanations are shown as sums. ∗The second segment with 1 less abducible
actually did finish computing after 109.48 seconds, but the first segment timed out.

include not just the shared resources, but also the approach that may be lever-
aged in other work. While we have not yet validated our technique using actual
patient data, we do apply our approach to hypothetical diabetes case studies.
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We apply our approach to the diagnosis and treatment of diabetes, a preva-
lent health problem affecting 37.3 million people in the United States (11.3%
of the U.S. population), with an additional 96 million people aged 18 years or
older (38.0% of the adult U.S. population) affected with prediabetes [6]. Our
approach to designing the ontology and representing rules that can trigger ab-
ductive queries can also be generalized to other medical conditions. Therefore,
this work and the resulting resources can potentially aid clinicians with a wide
range of clinical decision-making tasks. Our resources and approach are of in-
terest to the Semantic Web community since they illustrate how multimodal
reasoning can be implemented for a practical application.

8.3 Limitations and Future Directions

Due to scoping considerations, only a subset of diabetes information is encoded
in our ontology. This limitation is justified by the need for our approach to allow
for abductive reasoning and the requirement of our use case for only a proof of
concept rather than complete coverage. Nevertheless, a future extension of this
work includes incorporating more knowledge. Another limitation is that for many
queries to run quickly, such as those related to therapy planning, abducibles
need to be explicitly specified to constrain the Abox abduction solver to only
return explanations involving the expected concepts. This constraint reduces
computation time but requires preexisting knowledge of the expected results.

We plan to encode additional components from the ADA guidelines. More-
over, we wish to review relevant literature to find further pharmacotherapy fac-
tor associations and allow support for more antiglycemic therapies. Since we test
our approach using data based on diabetes-related case studies, one limitation
of our PHKGs is that they are based on hypothetical rather than real patient
data. Therefore, potential future research involves the validation of our approach
using actual patient data.

9 Conclusion

We have introduced DPO, which we have used as the vocabulary and knowl-
edge representation resource for our approach to supporting multimodal clinical
reasoning for the diagnosis and treatment of diabetes. Unlike earlier ontologies
that focus on comprehensiveness, we instead design a concise ontology able to
support multimodal reasoning. We have presented and evaluated our approach,
and have discussed the impact of this research, its limitations, and future work.
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