
Two-view Graph Neural Networks
for Knowledge Graph Completion

Vinh Tong1, Dai Quoc Nguyen2, Dinh Phung3, Dat Quoc Nguyen4

1University of Stuttgart, 2Oracle Labs, 3Monash University, 4VinAI Research
1vinh.tong@ipvs.uni-stuttgart.de, 2dai.nguyen@oracle.com,

3dinh.phung@monash.edu, 4v.datnq9@vinai.io

Abstract. We present an effective graph neural network (GNN)-based
knowledge graph embedding model, which we name WGE, to capture
entity- and relation-focused graph structures. Given a knowledge graph,
WGE builds a single undirected entity-focused graph that views entities
as nodes. WGE also constructs another single undirected graph from
relation-focused constraints, which views entities and relations as nodes.
WGE then proposes a GNN-based architecture to better learn vector
representations of entities and relations from these two single entity-
and relation-focused graphs. WGE feeds the learned entity and relation
representations into a weighted score function to return the triple scores
for knowledge graph completion. Experimental results show that WGE
outperforms strong baselines on seven benchmark datasets for knowledge
graph completion.

Keywords: Two-View; Graph Neural Networks; Knowledge Graph Com-
pletion; Link Prediction; WGE.

1 Introduction

A knowledge graph (KG) is a network of entity nodes and relationship edges,
which can be represented as a collection of triples in the form of (h, r, t),
wherein each triple (h, r, t) represents a relation r between a head entity h
and a tail entity t. Here, entities are real-world things or objects such as music
tracks, movies persons, organizations, places and the like, while each relation
type determines a certain relationship between entities. KGs are used in many
commercial applications, e.g. in such search engines as Google, Microsoft’s Bing
and Facebook’s Graph search. They also are useful resources for many natural
language processing tasks such as co-reference resolution [27,8], semantic parsing
[18,2] and question answering [10,9]. However, an issue is that KGs are often
incomplete, i.e., missing a lot of valid triples [4,23]. For an example of a specific
application, question answering systems based on incomplete KGs would not
provide correct answers given correctly interpreted input queries. Thus, much
work has been devoted towards KG completion to perform link prediction in
KGs. In particular, many KG embedding models have been proposed to predict
whether a triple not in KGs is likely to be valid or not, e.g., TransE [3], DistMult

2 Tong et al.

[37], ComplEx [33] and QuatE [39]. These KG embedding models aim to learn
vector representations for entities and relations and define a score function such
that valid triples have higher scores than invalid ones [23,40], e.g., the score of
the valid triple (Sydney, city in, Australia) is higher than the score of the invalid
one (Sydney, city in, Vietnam).

Recently, several KG completion works have adapted graph neural networks
(GNNs) using an encoder-decoder architecture, e.g., R-GCN [30] and CompGCN
[34]. In general, the encoder module customizes GNNs to update vector represen-
tations of entities and relations. Then, the decoder module employs an existing
score function to return the triple score [3,37,33,7,20,6,5]. For example, R-GCN
adapts Graph Convolutional Networks (GCNs) [17] to construct a specific encoder
to update only entity embeddings. CompGCN modifies GCNs to use composition
operations between entities and relations in the encoder module. Note that these
existing GNN-based KG embedding models mainly consider capturing the graph
structure surrounding entities as relation representations are used to update
the entity embeddings only (as shown in Equations 3, 5 and 6; and see the last
paragraph of Section 2 for a detailed discussion). Therefore, they might miss
covering potentially useful information on relation structure.

To this end, we propose a new KG embedding model—named WGE that is
equivalent to VVGE to abbreviate Two-View Graph Embedding—to leverage
GNNs to capture both entity-focused graph structure and relation-focused graph
structure for KG completion. In particular, WGE transforms a given KG into two
views. The first view—a single undirected entity-focused graph—only includes
entities as nodes to provide the entity neighborhood information. The second
view—a single undirected relation-focused graph—considers both entities and
relations as nodes, constructed from constraints (subjective relation, predicate
entity, objective relation) e.g. (born in, Sydney, city in), to attain the potential
dependence between two neighborhood relations. For instance, the knowledge
about a potential dependence between “born in” and “city in” could be rele-
vant for predicting some other relationship, e.g. “nationality” or “country of
citizenship”. Then WGE introduces a new GNN-based encoder module that
directly takes these two graph views as input to better update entity and relation
embeddings. WGE feeds the entity and relation embeddings into its decoder
module that uses a weighted score function to return the triple scores for KG
completion. In summary, our contributions are as follows:

– We present WGE for KG completion, that first proposes to transform a given
KG into entity- and relation-focused graph structures and then introduces a
new encoder architecture to learn entity and relation embeddings from these
two graph structures.

– To verify model effectiveness, we conduct extensive experiments to com-
pare our WGE with other strong GNN-based baselines on seven benchmark
datasets, including FB15K-237 [32] and six new and difficult datasets of
CoDEx-S, CoDEx-M, CoDEx-L, LitWD1K, LitWD19K and LitWD48K
[28,11]. The experiments show that WGE outperforms the GNN-based base-
lines and other competitive KG embedding models on these seven datasets.

Two-view Graph Neural Networks for Knowledge Graph Completion 3

2 Related work

Recently, GNNs become a central strand to learn low-dimensional continuous
embeddings for nodes and graphs [29,14]. GNNs provide faster and more practical
training and state-of-the-art results on benchmark datasets for downstream
tasks [36,38]. In general, GNNs update the vector representation of each node
by transforming and aggregating the vector representations of its neighbors
[17,13,35,21,22].

We represent each graph G = (V, E), where V is a set of nodes; and E is a set
of edges. Given a graph G, we formulate GNNs as follows:

h(k+1)
v = Aggregation

({
h(k)u

}
u∈Nv∪{v}

)
(1)

where h(k)v is the vector representation of node v at the k-th layer; and Nv is the
set of neighbours of node v.

There have been many designs for the Aggregation functions. The widely-
used one is introduced in Graph Convolutional Networks (GCNs) [17] as:

h(k+1)
v = g

 ∑
u∈Nv∪{v}

av,uW
(k)h(k)u

 ,∀v ∈ V (2)

where g is a nonlinear activation function such as ReLU; W (k) is a weight matrix
at the k-th layer; and av,u is an edge constant between nodes v and u in the

re-normalized adjacency matrix D̃
− 1

2 ÃD̃
− 1

2 , wherein Ã = A+ I where A is the
adjacency matrix, I is the identity matrix, and D̃ is the diagonal node degree
matrix of Ã.

It is worth mentioning that several KG embedding approaches have been
proposed to adapt GNNs for knowledge graph link prediction [30,31,34]. For
example, R-GCN [30] modifies the basic form of GCNs to introduce a specific
encoder to update entity embeddings:

h(k+1)
e = g

∑
r∈R

∑
e′∈N r

e

1

|N r
e |
W (k)

r h
(k)
e′ +W (k)h(k)e

 (3)

where R is a set of relations in the KG; N r
e = {e′|(e, r, e′) ∈ T ∪ (e′, r, e) ∈ T }

denotes the set of entity neighbors of entity e via relation edge r, wherein T
denotes the set of knowledge graph triples; and W (k)

r is a weight transformation
matrix associated with r at the k-th layer. Then R-GCN uses DistMult [37] as
its decoder module to compute the score of (h, r, t) as:

f (h, r, t) =
〈
h
(K)
h ,vr,h

(K)
t

〉
(4)

where h
(K)
h and h

(K)
t are output vectors taken from the last layer of the encoder

module; vr denotes the embedding of relation r; and ⟨⟩ denotes a multiple-linear
dot product ⟨a,b, c⟩ =

∑n
i ai × bi × ci.

4 Tong et al.

CompGCN [34] also customizes GCNs to consider composition operations
between entities and relations in the encoder module as follows:

h(k+1)
e = g

 ∑
(e′,r)∈Ne

W
(k)
type(r)ϕ

(
h
(k)
e′ ,h(k)r

) (5)

h(k+1)
r = W (k)h(k)r (6)

whereNe = {(e′, r)|(e, r, e′) ∈ T ∪ (e′, r, e) ∈ T } is the neighboring entity-relation
pair set of entity e; and W

(k)
type(r) denotes relation-type specific weight matrix.

CompGCN explores the composition functions (ϕ) inspired from TransE [3],
DistMult, and HolE [24]. Then CompGCN uses ConvE [7] as the decoder module.

The existing GNN-based KG embedding models, e.g. R-GCN and CompGCN,
mainly capture the graph structure surrounding entities. That is, as shown in
Equations 3, 5 and 6, a relation’s representation is not directly used to update
another relation’s representation and is only used to update entity embeddings,
while entity embeddings are not used to update relation representations. Thus,
these models might miss covering potentially useful relation structure information
that is illustrated by the example (born in, Sydney, city in) in Section 1.

3 Our model WGE

A knowledge graph G = {V,R, T } can be represented as a collection of factual
valid triples (head entity, relation, tail entity) denoted as (h, r, t) ∈ T with
h, t ∈ V and r ∈ R, wherein V , R and T denote the sets of entities, relations and
triples, respectively.

To better capture the graph structure, as illustrated in Figure 1, we introduce
WGE as follows: (i) WGE transforms a given KG into two views: a single
undirected entity-focused graph and a single undirected relation-focused graph.
(ii) WGE introduces a new encoder architecture to update vector representations
of entities and relations based on these two single graphs. (iii) WGE utilizes a
weighted score function as the decoder module to compute the triple scores.

3.1 Two-view construction

Entity-focused view WGE aims to obtain the entity neighborhood information.
Thus, given a KG G, WGE constructs a single undirected graph Gef viewing
entities as individual nodes. Here, Gef = {Vef , Eef}, wherein Vef is the set of
nodes and Eef is the set of edges. The number of nodes in Gef is equal to the
number of entities in G, i.e., |Vef | = |V|. In particular, for each triple (h, r, t) in
G, entities h and t become individual nodes in Gef with an edge between them,
as illustrated in Figure 1. Here, Gef is associated with an adjacency matrix Aef :

Aef (v, u) =

{
1 if there is an edge between entity nodes v and u
0 otherwise

(7)

Two-view Graph Neural Networks for Knowledge Graph Completion 5

Fig. 1. An illustration of our proposed WGE. Here, h
(k)
e and h

(k)
r the vector repre-

sentations of the entity e and the relation r at k-th layer of the encoder module, are
computed following Equation 13.

Relation-focused view WGE also aims to attain the potential dependence
between two neighborhood relations (e.g. “child of” and “spouse”) to enhance
learning representations. To do that, from G, our WGE extracts relation-focused
(RF) constraints in the form of (subjective relation, predicate entity, objective
relation), denoted as (rs, ep, ro), wherein ep is the tail entity for the relation rs
and also the head entity for the relation ro, e.g. (born in, Sydney, city in). Here,
WGE keeps a certain fraction β of common RF constraints based on ranking
how often two relations rs and ro co-appear in all extracted RF ones. Then,
WGE transforms those common obtained RF constraints into a single undirected
relation-focused graph Grf = {Vrf , Erf} that views both entities and relations
as individual nodes, wherein Vrf is the set of entity and relation nodes, Erf is
the set of edges. For example, as shown in Figure 1, given an RF constraint
(r1, e2, r2), WGE considers r1, e2, and r2 as individual nodes in Grf with edges
among them. Grf is associated with an adjacency matrix Arf :

Arf (v, u) =

{
1 if there is an edge between nodes v and u
0 otherwise

(8)

3.2 Encoder module

Given a single graph G = (V, E), we might adopt vanilla GNNs or GCNs di-
rectly on G and its adjacency matrix A to learn node embeddings. Recently,
QGNN—Quaternion Graph Neural Network [21]—has been proposed to learn
node embeddings in the quaternion space as follows:

h(k+1),Q
v = g

 ∑
u∈Nv∪{v}

av,uW
(k),Q ⊗ h(k),Q

u

 (9)

where the superscript Q denotes the quaternion space; k is the layer index; Nv

is the set of neighbors of node v; W (k),Q is a quaternion weight matrix; ⊗

6 Tong et al.

denotes the Hamilton product; and g is a nonlinear activation function such as
tanh; h(0),Q

u ∈ Hn is an input embedding vector for node u, which is randomly
initialized and updated during training; and av,u is an edge constant between

nodes v and u in the Laplacian re-normalized adjacency matrix D̃
− 1

2 ÃD̃
− 1

2 with
Ã = A+ I, where A is the adjacency matrix, I is the identity matrix, and D̃ is
the diagonal node degree matrix of Ã. See quaternion algebra background in the
Appendix. QGNN has demonstrated its superior performances for downstream
tasks such as graph classification and node classification.

Our WGE thus proposes a new encoder architecture to learn entity and
relation vector representations based on two different QGNNs, as illustrated in
Figure 1. This new encoder aims to capture both entity- and relation-focused
graph structures to better update vector representations for entities and relations
as follows:

h′(k+1),Q
v,ef = g

 ∑
u∈Nv∪{v}

av,u,efW
(k),Q
ef ⊗ h

(k),Q
u,ef

 (10)

where the subscript ef denotes for QGNN on the entity-focused graph Gef , and

we define h
(k),Q
u,ef as:

h
(k),Q
u,ef = h′(k),Q

u,ef ∗ h′(k),Q
u,rf (11)

where ∗ denotes a quaternion element-wise product, and h′(k),Q
u,rf is computed

following the Equation 12:

h′(k+1),Q
v,rf = g

 ∑
u∈Nv∪{v}

av,u,rfW
(k),Q
rf ⊗ h(k),Q

u

 (12)

where the subscript rf denotes for QGNN on the relation-focused graph Grf . We

define h(k),Q
u as:

h(k),Q
u =

h
(k),Q
u,ef if u is an entity node, as in Equation 11

h′(k),Q
u,rf if u is a relation node, following Equation 12

(13)

WGE uses h(k),Q
e and h(k),Q

r as computed following Equation 13 as the vector
representations for entity e and relation r at the k-th layer of our encoder module,
respectively. These vectors will be used as input for the decoder module.

Note that our encoder module is not merely using such a GNN but proposes
a new manner where the two GNNs interact with each other to jointly learn
entity and relation representations from two graphs. This interaction is crucial
and novel and is directly responsible for the good performance of our model,
showing that two-view modeling helps produce better scores than single-view
modeling (See our ablation study in Section 4.3).

Two-view Graph Neural Networks for Knowledge Graph Completion 7

3.3 Decoder module

As the encoder module learns quaternion entity and relation embeddings, WGE
employs the quaternion KG embedding model QuatE [39] across all hidden layers
of the encoder module to return a final score f(h, r, t) for each triple (h, r, t) as:

fk(h, r, t) =
(
h
(k),Q
h ⊗ h◁,(k),Q

r

)
• h(k),Q

t (14)

f(h, r, t) =
∑
k

αkfk(h, r, t) (15)

where αk ∈ [0, 1] is a fixed important weight of the k-th layer with
∑

k αk = 1;

h
(k),Q
h , h(k),Q

r , and h
(k),Q
t are quaternion vectors taken from the k-th layer of the

encoder; ⊗, ◁ and • denote the Hamilton product, the normalized quaternion
and the quaternion-inner product, respectively.

3.4 Objective function

We train WGE by using Adam [16] to optimize a weighted loss function as:

L = −
∑

(h,r,t)∈{T ∪T ′}

∑
k

αk

(
l(h,r,t) log

(
pk(h, r, t)

)
+

(
1− l(h,r,t)

)
log

(
1− pk(h, r, t)

))
(16)

in which, l(h,r,t) =

{
1 for (h, r, t) ∈ T
0 for (h, r, t) ∈ T ′

and pk(h, r, t) = sigmoid
(
fk(h, r, t)

)
here, T and T ′ are collections of valid and invalid triples, respectively. T ′ is
collected by corrupting valid triples in T .

4 Experiments

We evaluate our proposed WGE for the KG completion task, i.e., link prediction
[3], which aims to predict a missing entity given a relation with another entity,
e.g., predicting a head entity h given (?, r, t) or predicting a tail entity t given
(h, r, ?). The results are calculated by ranking the scores produced by the score
function f on triples in the test set.

4.1 Setup

Datasets Recent works [28,11] show that there are some quality issues with
previous existing KG completion datasets. For example, a large percentage of
relations in FB15K-237 [32] could be covered by a trivial frequency rule [28].

8 Tong et al.

Table 1. Statistics of the experimental datasets.

Dataset |E| |R| #Triples
Train Valid Test

CoDEx-S 2,034 42 32,888 1827 1828
CoDEx-M 17,050 51 185,584 10,310 10,311
CoDEx-L 77,951 69 551,193 30,622 30,622
LitWD1K 1,533 47 26,115 1,451 1,451
LitWD19K 18,986 182 260,039 14,447 14,447
LitWD48K 47,998 257 303,117 16,838 16,838
FB15K-237 14,541 237 272,115 17,535 20,466

Hence, they introduce six new KG completion benchmarks, consisting of CoDEx-
S, CoDEx-M, CoDEx-L,1 LitWD1K, LitWD19K and LitWD48K.2 These datasets
are more difficult and cover more diverse and interpretable content than the
previous ones. We use the six new challenging datasets as well as the FB15K-237
dataset to compare different models. The statistics of these datasets are presented
in Table 1.

Evaluation protocol Following the standard protocol [3], to generate corrupted
triples for each test triple (h, r, t), we replace either h or t by each of all other
entities in turn. We also apply the “Filtered” setting protocol [3] to filter out
before ranking any corrupted triples that appear in the KG. We then rank the
valid test triple as well as the corrupted triples in descending order of their triple
scores. We report standard evaluation metrics: mean reciprocal rank (MRR) and
Hits@10 (i.e. the proportion of test triples for which the target entity is ranked
in the top 10 predictions). Here, a higher MRR/Hits@10 score reflects a better
prediction result.

Our model’s training protocol We implement our model using Pytorch
[26]. We apply the standard Glorot initialization [12] for parameter initialization.
We employ tanh for the nonlinear activation function g. We use the Adam
optimizer [16] to train our WGE model up to 3000 epochs on all datasets.
We use a grid search to choose the number K of hidden layers ∈ {1, 2, 3},
the Adam initial learning rate ∈

{
1e−4, 5e−4, 1e−3, 5e−3

}
, the batch size ∈

{1024, 2048, 4096}, and the input dimension and hidden sizes of the QGNN
hidden layers ∈ {32, 64, 128, 256, 512, 1024}. For the decoder module, we perform
a grid search to select its mixture weight value α0 ∈ {0.3, 0.6, 0.9}, and fix the

mixture weight values for the K layers at αk =
1− α0

K
. For the percentage β

of kept RF constraints, we grid-search β ∈ {0.1, 0.2, ..., 0.9} for the CoDEx-S
dataset, and the best value is 0.2; then we use β = 0.2 for all remaining datasets.

1 https://github.com/tsafavi/codex [28]
2 https://github.com/GenetAsefa/LiterallyWikidata [11]

https://github.com/tsafavi/codex
https://github.com/GenetAsefa/LiterallyWikidata

Two-view Graph Neural Networks for Knowledge Graph Completion 9

Table 2. Experimental results on seven test sets. Hits@10 (H@10) is reported in %.
The best scores are in bold, while the second best scores are in underline. The results
of TransE [3], ComplEx [33], ConvE [7] and TuckER [1] on three CoDEx test sets are
taken from [28]. The results of R-GCN [30] and CompGCN [34] and SimQGNN [21]
on three CoDEx test sets are taken from [21]. The ComplEx results on three LitWD
test sets are taken from [11]. The results of TransE, ComplEx, ConvE, R-GCN and
CompGCN on the FB15K-237 test set are taken from [34]. The results of TuckER on
FB15K-237 are taken from [1]. All results are reported using the same setup.

Method
CoDEx-S CoDEx-M CoDEx-L LitWD1K LitWD19K LitWD48K FB15K-237
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

TransE 0.354 63.4 0.303 45.4 0.187 31.7 0.313 51.3 0.172 26.4 0.269 41.3 0.294 46.5
ComplEx 0.465 64.6 0.337 47.6 0.294 40.0 0.413 67.3 0.181 29.6 0.277 42.8 0.247 33.9
ConvE 0.444 63.5 0.318 46.4 0.303 42.0 0.477 71.4 0.310 45.1 0.372 54.0 0.325 50.1
TuckER 0.444 63.8 0.328 45.8 0.309 43.0 0.498 74.4 0.311 46.3 0.391 58.7 0.358 54.4

R-GCN 0.275 53.3 0.124 24.1 0.073 14.2 0.244 46.2 0.211 34.1 0.238 44.2 0.248 41.7
CompGCN 0.395 62.1 0.312 45.7 0.304 42.8 0.323 52.8 0.319 47.4 0.379 58.4 0.355 53.5
SimQGNN 0.435 65.2 0.323 47.7 0.310 43.7 0.518 75.1 0.308 46.9 0.350 57.6 0.339 51.8

QuatE 0.449 64.4 0.323 48.0 0.312 44.3 0.514 73.1 0.341 49.3 0.392 58.6 0.342 52.9

WGE 0.452 66.4 0.338 48.5 0.320 44.5 0.527 76.2 0.345 49.9 0.401 59.5 0.348 53.6

We evaluate the MRR after every 10 training epochs on the validation set to
select the best model checkpoint, and then apply the selected one to the test set.

Baselines’ training protocol For strong baseline models, we apply the
same evaluation protocol. The training protocol is the same w.r.t. parameter
initialization, the optimizer, the hidden layers, the initial learning rate values,
the batch sizes and the number of training epochs as well as the best model
checkpoint selection. We also use a model-specific configuration for each baseline.
In particular, for TransE [3], ConvE [7], TuckER [1] and QuatE, we use grid
search to choose the embedding dimension in {64, 128, 256, 512}. For the QGNN-
based KG embedding model SimQGNN [21] that obtains state-of-the-art results
on the CoDEx datasets, we successfully reproduce this model’s reported results
using its optimal hyper-parameters. For R-GCN and CompGCN, we use 2 GCN
layers and vary the embedding size of the GCN layer from {64, 128, 256, 512}.
For WGE variants in the Ablation study, we also set the same dimension value
for both the embedding size and the hidden size, wherein we vary the dimension
value in {64, 128, 256, 512}.

4.2 Main results

Table 2 shows our results obtained for WGE and other strong baselines on
seven experimental datasets. In general, our WGE obtains the highest MRR and
Hits@10 scores on all three CoDEx and three LitDW challenge datasets (except
the second highest MRR on CoDEx-S); and on FB15K-237, WGE obtains the
third highest MRR and the second highest Hits@10. In particular, WGE gains
substantial improvements compared to both R-GCN and CompGCN on all three
CoDEx and three LitDW challenge datasets. Compared to the QGNN-based

10 Tong et al.

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
Epoch

0.435

0.440

0.445

0.450

0.455

0.460

0.465

0.470

M
RR

 = 0.1
 = 0.2
 = 0.3

 = 0.4
 = 0.5
 = 0.6

 = 0.7
 = 0.8
 = 0.9

(a) Effects of the percentage β.

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

M
RR

32
64

128
256

512
1024

(b) Effects of the embedding sizes.

Fig. 2. Effects of hyper-parameters on the CoDEx-S validation set.

model SimQGNN, our WGE obtains 1.5% and 0.02 absolute higher Hits@10
and MRR scores averaged over all seven datasets than SimQGNN, respectively.
We also find that QuatE obtains competitive performance scores when carefully
tuning its hyper-parameters (e.g. generally outperforming SimQGNN),3 however,
it is still surpassed by WGE by about 1.1+% and 0.01 on averaged Hits@10 and
MRR, respectively.

Hyper-parameter sensitivity We present in Figures 2(a) and 2(b) the effects
of essential hyper-parameters including the percentage β of kept RF constraints
and the embedding sizes on the CoDEx-S validation set.

– Percentage β of kept RF constraints: As defined in Section 3.1, the hyper-
parameter β aims to determine the number of common RF constraints to be
kept in the relation-focused graph. We visualize the MRR scores according
to the value of β in {0.1, 0.2, ..., 0.9} in Figure 2(a).4 We find that WGE
performs best with β = 0.2. Recall that the hyper-parameter β = 0.2 is tuned
on the CoDEx-S validation set only, and then used for all remaining datasets.
Here, the hyper-parameter β = 0.2 already helps our WGE to outperform
strong baselines, as shown in Table 2. Our scores obtained on the remaining
datasets are likely better if β is also tuned on those datasets. A limitation
of our approach is that the mechanism of selecting kept RF constraints in
the Relation-focused view is based on the observed co-occurrence frequency
between entities and relations. This might not be optimal as some entity-
relation pairs can have important interactions regardless of their small number
of co-occurrences as the observed KG is incomplete (the actual number of

3 Note that the experimental setup is the same for both QuatE and WGE for a fair
comparison as WGE uses QuatE for decoding. Zhang et al. [39] reported MRR
at 0.348 and Hits@10 at 55.0% on FB15K-237 for QuatE. However, we could not
reproduce those scores.

4 Our training protocol monitors the MRR score on the validation set to select the
best model checkpoint.

Two-view Graph Neural Networks for Knowledge Graph Completion 11

occ
up

ati
on

dip
lom

ati
c r

ela
tio

n

mem
be

r o
f

ge
nre

cou
ntr

y o
f c

itiz
en

shi
p

ins
tru

men
t

lan
gu

ag
es

spo
ken

rec
ord

 la
be

l

inf
lue

nce
d b

y

rel
igio

n
0.0

0.2

0.4

0.6

0.8

1.0

M
RR

 -
Co

DE
x-

S

WGE QuatE SimQGNN

0
5
10
15
20
25
30
35

%
Tr

ip
le

s w
.r.

t e
ac

h
re

la
tio

n30.2

17.6
15.5

5.4 5.0 5.0 3.8 3.2 1.9 1.4

(a) Tail prediction on CoDEx-S.

occ
up

ati
on

dip
lom

ati
c r

ela
tio

n

mem
be

r o
f

ge
nre

cou
ntr

y o
f c

itiz
en

shi
p

ins
tru

men
t

lan
gu

ag
es

spo
ken

rec
ord

 la
be

l

inf
lue

nce
d b

y

rel
igio

n
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
RR

 -
Co

DE
x-

S

WGE QuatE SimQGNN

0
5
10
15
20
25
30
35

%
Tr

ip
le

s w
.r.

t e
ac

h
re

la
tio

n30.2

17.6
15.5

5.4 5.0 5.0 3.8 3.2 1.9 1.4

(b) Head prediction on CoDEx-S.

occ
up

ati
on

cou
ntr

y o
f c

itiz
en

shi
p

lan
gu

ag
es

spo
ken

mem
be

r o
f

ge
nre

ed
uca

ted
 at

cas
t m

em
be

r

pla
ce

of
bir

th

ins
tru

men
t

pla
ce

of
de

ath
0.0

0.2

0.4

0.6

0.8

1.0

M
RR

 -
Co

DE
x-

M

WGE QuatE SimQGNN

0
5
10
15
20
25
30
35
40

%
Tr

ip
le

s w
.r.

t e
ac

h
re

la
tio

n35.1

8.1
6.1 5.5 5.3 4.7 4.2 3.9 3.1 3.0

(c) Tail prediction on CoDEx-M.

occ
up

ati
on

cou
ntr

y o
f c

itiz
en

shi
p

lan
gu

ag
es

spo
ken

mem
be

r o
f

ge
nre

ed
uca

ted
 at

cas
t m

em
be

r

pla
ce

of
bir

th

ins
tru

men
t

pla
ce

of
de

ath
0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
RR

 -
Co

DE
x-

M

WGE QuatE SimQGNN

0
5
10
15
20
25
30
35
40

%
Tr

ip
le

s w
.r.

t e
ac

h
re

la
tio

n35.1

8.1
6.1 5.5 5.3 4.7 4.2 3.9 3.1 3.0

(d) Head prediction on CoDEx-M.

Fig. 3. MRR on the CoDEx-S and CoDEx-M validation sets w.r.t each relation. The
right y-axis is the percentage of triples corresponding to each relation.

co-occurrences could be larger). In future work, we would design a soft scoring
mechanism that gives a score for each entity-relation pair and be able to
adaptively prune the graph during training.

– Embedding sizes: Figure 2(b) illustrates the performance differences of
WGE when varying the embedding size in {32, 64, 128, 256, 512, 1024}. Our
WGE achieves the highest MRR when the embedding size is 256. We find
that there are no substantial MRR gains when the size is larger than 256.
We also observe similar findings for the remaining datasets.

Qualitative study We report the performances of WGE, QuatE and SimQGNN
over different relation types on the CoDEx validation sets in Figures 3 and 4. For
each dataset, we select the top 10 frequent relations and compare model perfor-
mances over these 10 relations. We also separate the result into tail prediction
(i.e., predicting the tail entity given (h, r, ?)) and head prediction (i.e., predicting
the head entity given (?, r, t)). WGE generally works better than both QuatE and
SimQGNN except for some special relation cases. For example, QuatE achieves
higher head prediction scores for the relation “country of citizenship” than WGE
as shown in Figures 3(b), 3(d) and 4(b). A possible reason is that some useful

12 Tong et al.

occ
up

ati
on

cou
ntr

y o
f c

itiz
en

shi
p

lan
gu

ag
es

spo
ken

pla
ce

of
bir

th

ed
uca

ted
 at

ge
nre

cas
t m

em
be

r

pla
ce

of
de

ath

mem
be

r o
f

mem
be

r o
f p

olit
ica

l p
art

y
0.0

0.2

0.4

0.6

0.8

1.0

M
RR

 -
Co

DE
x-

L

WGE QuatE SimQGNN

0
5
10
15
20
25
30
35

%
Tr

ip
le

s w
.r.

t e
ac

h
re

la
tio

n30.7

10.8

6.4 6.3 5.6 4.3 4.1 4.0 3.0 2.1

(a) Tail prediction on CoDEx-L.

occ
up

ati
on

cou
ntr

y o
f c

itiz
en

shi
p

lan
gu

ag
es

spo
ken

pla
ce

of
bir

th

ed
uca

ted
 at

ge
nre

cas
t m

em
be

r

pla
ce

of
de

ath

mem
be

r o
f

mem
be

r o
f p

olit
ica

l p
art

y
0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

M
RR

 -
Co

DE
x-

L

WGE QuatE SimQGNN

0
5
10
15
20
25
30
35

%
Tr

ip
le

s w
.r.

t e
ac

h
re

la
tio

n30.7

10.8

6.4 6.3 5.6 4.3 4.1 4.0 3.0 2.1

(b) Head prediction on CoDEx-L.

Fig. 4. MRR on the CoDEx-L validation set w.r.t each relation. The right y-axis is the
percentage of triples corresponding to each relation.

RF constraints related to the relation “country of citizenship” have been omitted
from the relation-focused graph construction. Note that there is a substantial
performance gap between the head prediction and the tail prediction, wherein
predicting the tail entities is easier than predicting the head entities. The reason
might come from the fact that in the CoDEx datasets, each relation is associated
with a small number of tail entities but with a large number of head entities. For
example, head entity candidates for “occupation” relations can be any person
nodes, while candidates for tail entities are limited by the number of job entities.

4.3 Ablation analysis

Tables 3 and 4 present our ablation results on the validation sets for five variants
of our proposed WGE, including:

– (1) A variant without predicate entities: This is a variant that only keeps
relation nodes in the relation-focused view, i.e., without using the predicate
entities as nodes from the extracted RF constraints.

– (2) A variant with GCN: This is a variant that uses GCN in the encoder
module instead of using QGNN.

– (3) A variant with only entity-focused view: This is a variant that uses
only the entity-focused view.

– (4) A variant with only relation-focused view: This is a variant that
uses only the relation-focused view.

– (5) A variant with the Levi graph transformation: This is a vari-
ant where a single Levi graph is used as the input of the encoder module.
From the given KG, we investigate another strategy of constructing a sin-
gle undirected graph, which can be considered as a direct extension of our
entity-focused graph view with additional relation nodes, following the Levi
graph transformation [19].

Two-view Graph Neural Networks for Knowledge Graph Completion 13

Table 3. Ablation results on CoDEx validation sets for five variants of our WGE. (1)
A variant where the relation-focused view uses only relation nodes, without using the
predicate entities. (2) A variant utilizes GCN in the encoder module instead of using
QGNN. (3) A variant utilizes only the entity-focused view. (4) A variant utilizes only
the relation-focused view. (5) A variant uses the Levi graph transformation, i.e. the
entity-focused graph view with addition relation nodes.

Method
CoDEx-S CoDEx-M CoDEx-L
MRR H@10 MRR H@10 MRR H@10

WGE 0.469 67.9 0.339 48.4 0.320 44.1

(1) w/o predicate entities 0.448 67.1 0.328 47.1 0.312 43.1
(2) w/ GCN 0.441 66.5 0.322 47.0 0.306 43.0
(3) w/ only entity-focused 0.452 66.9 0.329 46.5 0.314 43.0
(4) w/ only relation-focused 0.455 66.9 0.323 46.7 0.305 42.9
(5) w/ only Levi graph 0.447 63.5 0.320 45.7 0.288 41.1

Table 4. Ablation results on LitWD and FB15K-237 validation sets for five variants of
our WGE.

Method
LitWD1K LitWD19K LitWD48K FB15K-237
MRR H@10 MRR H@10 MRR H@10 MRR H@10

WGE 0.518 75.5 0.343 49.5 0.402 59.3 0.351 53.6

(1) w/o predicate entities 0.483 72.6 0.326 47.9 0.389 57.2 0.339 52.4
(2) w/ GCN 0.470 71.3 0.325 47.2 0.382 56.6 0.327 50.2
(3) w/ only entity-focused 0.497 73.3 0.336 48.1 0.397 58.4 0.341 52.5
(4) w/ only relation-focused 0.498 73.7 0.338 48.4 0.395 58.4 0.340 52.3
(5) w/ only Levi graph 0.484 72.8 0.331 48.2 0.387 56.9 0.336 50.8

We find that WGE outperforms all of its variants, thus showing that: from (1),
the predicate entities can help to better infer the potential dependence between
two neighborhood relations; from (2), GCNs are not as effective as QGNNs; and
from (3), (4) and (5), the modeling of two-view graphs of KGs helps produce
better scores than single-view modeling of KGs, confirming the effectiveness of
our two-view WGE approach. In addition, variant (5) obtains lower scores than
variant (3), also showing that the Levi graph transformation is not as effective
as the entity-focused graph transformation.

5 Conclusion

In this paper, we have introduced WGE—an effective GNN-based KG embedding
model—to enhance the entity neighborhood information with the potential
dependence between two neighborhood relations. In particular, WGE constructs
two views from the given KG, including a single undirected entity-focused graph
and a single undirected relation-focused graph. Then WGE proposes a new
encoder architecture to update entity and relation vector representations from
these two graph views. After that, WGE employs a weighted score function
to compute the triple scores for KG completion. Extensive experiments show

14 Tong et al.

that WGE outperforms other strong GNN-based baselines and KG embedding
models on seven KG completion benchmark datasets. Our WGE implementation
is publicly available at: https://github.com/vinhsuhi/WGE.

Acknowledgment

Most of this work was done while Vinh Tong was a research resident at VinAI
Research, Vietnam.

Appendix

The hyper-complex vector space has recently been considered on the Quaternion
space [15] consisting of one real and three separate imaginary axes. It provides
highly expressive computations through the Hamilton product compared to the
Euclidean and complex vector spaces. We provide key notations and operations
related to the Quaternion space required for our later development. Additional
details can further be found in [25].

A quaternion q ∈ H is a hyper-complex number consisting of one real and
three separate imaginary components [15] defined as:

q = qr + qii+ qj j+ qkk (17)

where qr, qi, qj , qk ∈ R, and i, j, k are imaginary units that i2 = j2 = k2 = ijk = −1.
The operations for the Quaternion algebra are defined as follows:

Addition. The addition of two quaternions q and p is defined as:

q + p = (qr + pr) + (qi + pi)i+ (qj + pj)j+ (qk + pk)k (18)

Norm. The norm ∥q∥ of a quaternion q is computed as:

∥q∥ =
√

q2r + q2i + q2j + q2k (19)

And the normalized or unit quaternion q◁ is defined as: q◁ = q
∥q∥

Scalar multiplication. The multiplication of a scalar λ and q is computed
as follows:

λq = λqr + λqii+ λqj j+ λqkk (20)

Conjugate. The conjugate q∗ of a quaternion q is defined as:

q∗ = qr − qii− qj j− qkk (21)

Hamilton product. The Hamilton product ⊗ (i.e., the quaternion multipli-
cation) of two quaternions q and p is defined as:

https://github.com/vinhsuhi/WGE

Two-view Graph Neural Networks for Knowledge Graph Completion 15

q ⊗ p = (qrpr − qipi − qjpj − qkpk)

+ (qipr + qrpi − qkpj + qjpk)i

+ (qjpr + qkpi + qrpj − qipk)j

+ (qkpr − qjpi + qipj + qrpk)k (22)

We can express the Hamilton product of q and p in the following form:

q ⊗ p =

1
i
j
k

⊤

qr −qi −qj −qk
qi qr −qk qj
qj qk qr −qi
qk −qj qi qr

pr
pi
pj
pk

 (23)

The Hamilton product of two quaternion vectors q and p ∈ Hn is computed as:

q ⊗ p = (qr ◦ pr − qi ◦ pi − qj ◦ pj − qk ◦ pk)

+ (qi ◦ pr + qr ◦ pi − qk ◦ pj + qj ◦ pk)i

+ (qj ◦ pr + qk ◦ pi + qr ◦ pj − qi ◦ pk)j

+ (qk ◦ pr − qj ◦ pi + qi ◦ pj + qr ◦ pk)k (24)

where ◦ denotes the element-wise product. We note that the Hamilton product
is not commutative, i.e., q ⊗ p ̸= p⊗ q.

We can derived a product of a quaternion matrixW ∈ Hm×n and a quaternion
vector p ∈ Hn from Equation 23 as follow:

W ⊗ p =

1
i
j
k

⊤

W r −W i −W j −W k

W i W r −W k W j

W j W k W r −W i

W k −W j W i W r

pr

pi

pj

pk

 (25)

where pr, pi, pj , and pk ∈ Rn are real vectors; and W r, W i, W j , and W k ∈
Rm×n are real matrices.

Quaternion-inner product. The quaternion-inner product • of two quater-
nion vectors q and p ∈ Hn returns a scalar as:

q • p = qT
r pr + qT

i pi + qT
j pj + qT

kpk (26)

Quaternion element-wise product. We further define the element-wise
product of two quaternions vector q and p ∈ Hn as follow:

p ∗ q = (qr ◦ pr) + (qi ◦ pi)i+ (qj ◦ pj)j+ (qk ◦ pk)k (27)

16 Tong et al.

References

1. Balažević, I., Allen, C., Hospedales, T.M.: TuckER: Tensor Factorization for Knowl-
edge Graph Completion. In: EMNLP. pp. 5185–5194 (2019)

2. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic Parsing on Freebase from
Question-Answer Pairs. In: EMNLP. pp. 1533–1544 (2013)

3. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
Embeddings for Modeling Multi-relational Data. In: NIPS. pp. 2787–2795 (2013)

4. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning Structured Embeddings
of Knowledge Bases. In: AAAI. pp. 301–306 (2011)

5. Chen, X., Zhou, Z., Gao, M., Shi, D., Husen, M.N.: Knowledge representation
combining quaternion path integration and depth-wise atrous circular convolution.
In: UAI. pp. 336–345 (2022)

6. Demir, C., Ngomo, A.C.N.: Convolutional Complex Knowledge Graph Embeddings.
In: ESWC. pp. 409–424 (2021)

7. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D Knowledge
Graph Embeddings. In: AAAI. pp. 1811–1818 (2018)

8. Dutta, S., Weikum, G.: Cross-Document Co-Reference Resolution using Sample-
Based Clustering with Knowledge Enrichment. Transactions of the ACL 3, 15–28
(2015)

9. Fader, A., Zettlemoyer, L., Etzioni, O.: Open Question Answering over Curated
and Extracted Knowledge Bases. In: KDD. pp. 1156–1165 (2014)

10. Ferrucci, D.A.: Introduction to ”This is Watson”. IBM Journal of Research and
Development 56(3), 235–249 (2012)

11. Gesese, G.A., Alam, M., Sack, H.: LiterallyWikidata - A Benchmark for Knowledge
Graph Completion Using Literals. In: ISWC. pp. 511–527 (2021)

12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS. pp. 249–256 (2010)

13. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS (2017)

14. Hamilton, W.L., Ying, R., Leskovec, J.: Representation Learning on Graphs: Meth-
ods and Applications. IEEE Data Engineering Bulletin 40(3), 52–74 (2018)

15. Hamilton, W.R.: On Quaternions; or on a new System of Imaginaries in Algebra.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
25(163), 10–13 (1844)

16. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization. In: ICLR (2015)
17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. In: ICLR (2017)
18. Krishnamurthy, J., Mitchell, T.: Weakly Supervised Training of Semantic Parsers.

In: EMNLP-CoNLL. pp. 754–765 (2012)
19. Levi, F.W.: Finite Geometrical Systems: Six Public Lectues Delivered in February,

1940, at the University of Calcutta. University of Calcutta (1942)
20. Nguyen, D.Q., Nguyen, D.Q., Nguyen, T.D., Phung, D.: Convolutional Neural

Network-based Model for Knowledge Base Completion and Its Application to Search
Personalization. Semantic Web 10(5), 947–960 (2019)

21. Nguyen, D.Q., Nguyen, T.D., Phung, D.: Quaternion graph neural networks. In:
ACML (2021)

22. Nguyen, D.Q., Tong, V., Phung, D., Nguyen, D.Q.: Node Co-occurrence based
Graph Neural Networks for Knowledge Graph Link Prediction. In: WSDM. pp.
1589–1592 (2022)

Two-view Graph Neural Networks for Knowledge Graph Completion 17

23. Nguyen, D.Q.: A survey of embedding models of entities and relationships for
knowledge graph completion. In: TextGraphs. pp. 1–14 (2020)

24. Nickel, M., Rosasco, L., Poggio, T.: Holographic Embeddings of Knowledge Graphs.
In: AAAI. pp. 1955–1961 (2016)

25. Parcollet, T., Morchid, M., Linarès, G.: A survey of quaternion neural networks.
Artificial Intelligence Review 53, 2957––2982 (2020)

26. Paszke, A., Gross, S., Massa, F., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: NeurIPS. pp. 8024–8035 (2019)

27. Ponzetto, S.P., Strube, M.: Exploiting Semantic Role Labeling, WordNet and
Wikipedia for Coreference Resolution. In: NAACL. pp. 192–199 (2006)

28. Safavi, T., Koutra, D.: CoDEx: A Comprehensive Knowledge Graph Completion
Benchmark. In: EMNLP. pp. 8328–8350 (2020)

29. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2009)

30. Schlichtkrull, M., Kipf, T., Bloem, P., Berg, R.v.d., Titov, I., Welling, M.: Modeling
relational data with graph convolutional networks. In: ESWC. pp. 593–607 (2018)

31. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware
convolutional networks for knowledge base completion. In: AAAI. pp. 3060–3067
(2019)

32. Toutanova, K., Chen, D.: Observed Versus Latent Features for Knowledge Base
and Text Inference. In: CVSC. pp. 57–66 (2015)

33. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex Embeddings
for Simple Link Prediction. In: ICML. pp. 2071–2080 (2016)

34. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-relational
graph convolutional networks. In: ICLR (2020)

35. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

36. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A Comprehensive Survey
on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning
Systems 32(1), 4–24 (2021)

37. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding Entities and Relations
for Learning and Inference in Knowledge Bases. In: ICLR (2015)

38. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: A survey.
IEEE Transactions on Big Data 6, 3–28 (2020)

39. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In:
NeurIPS. pp. 2731–2741 (2019)

40. Zhang, Y., Yao, Q., Dai, W., Chen, L.: AutoSF: Searching Scoring Functions for
Knowledge Graph Embedding. In: ICDE. pp. 433–444 (2020)

	Two-view Graph Neural Networks for Knowledge Graph Completion

