
REGNUM: Generating Logical Rules with Numerical
Predicates in Knowledge Graphs

Armita Khajeh Nassiri1[0000−0002−5734−0351], Nathalie
Pernelle1,2[0000−0003−1487−393X], and Fatiha Saı̈s1[0000−0002−6995−2785]

1 LISN, CNRS (UMR 9015), Paris Saclay University, Orsay F-91405, France
2 LIPN, CNRS (UMR 7030), University Sorbonne Paris Nord, France

firstname.lastname@lri.fr

Abstract. Mining logical rules from a knowledge graph (KG) can reveal useful
patterns for predicting facts, curating the KG, and identifying trends. However,
many rule mining systems face challenges when working with numerical data be-
cause numerical predicates can take a large number of values, leading to a huge
search space. In this work, we present REGNUM, a system that addresses this is-
sue by generating rules with numerical constraints. REGNUM extends the body
of rules mined from a KG by using supervised discretization of numerical values
with decision trees to increase the confidence of the rules without sacrificing sig-
nificance. Our experimental results show that the numerical rules have a higher
overall quality than the parent rules and are effective at making better predictions.

Keywords: Rule Mining · Numerical Predicates · KG Completion.

1 Introduction

Knowledge graphs (KG) are large collections of facts about the world or a specific
domain stored in a machine-readable format. There is no surprise that these large KGs
incorporate different forms of knowledge within them. There has been a tremendous
amount of work in the literature trying to capture and mine this knowledge. One such
line of work is mining logical rules in KGs. These rules can serve to complete the
KG, detect erroneous data, or uncover the knowledge that is not explicitly stated in the
ontology. For instance, if we don’t know one’s place of residence, we could infer that
they live in the same place as their spouse. In addition, rules can serve to debug the
KG. If the spouse of someone lives in a different city, then this may indicate a problem.
Finally, rules are useful in downstream applications such as fact-checking [1], ontology
alignment [11, 16], or predicting completeness [9]. Furthermore, such rules have the
advantage of being explainable, interpretable, and transferable to unseen entities.

One challenge in finding logical rules in KGs lies in the exponential size of the
search space, which varies depending on the considered language bias. To address this
issue, several recent approaches have relied on sampling or approximate confidence
calculations [10], [30], and [23]. Another common technique [23, 21, 30], from stan-
dard inductive logic programming (ILP), is to mine not all rules but only enough rules
to cover the positive examples. Likewise, this speeds up the computation but may lose

2 Khajeh Nassiri et al.

many interesting rules. While existing rule mining approaches are effective, they are un-
able to consider rules that involve constraints defined on numerical values. We believe
that such constraints can be highly relevant in domains such as finance, public health,
or life science as they can help uncover useful information, such as the increased like-
lihood of a patient with heart disease having taken mood stabilizers for over five years.
In this paper, we take a step forward toward incorporating numerical predicates into
logical rules in a way that supports knowledge expansion. We focus on constraints that
express the membership or non-membership to a value interval. One approach to imple-
menting these constraints would be to discretize the values of the numerical predicates
in a pre-processing step. However, this would not provide with relevant constraints for
each rule and yield to loss of information. On the other hand, calculating constraints
while the rule mining technique explores the search space (as it generalizes or refines
the rule) results in having to re-calculate the interval at each step, making the approach
time-consuming over large graphs. To this end, we propose a novel method that involves
two steps: first, to obtain First-order logic (FOL) rules using existing efficient rule min-
ing tools, and second, to enrich the rules with numerical predicates and constraints. For
this second step, we consider the problem as a classification problem to obtain the in-
tervals based on the correct and incorrect predictions of the rule, guided by the quality
of the rules. The main contributions of our paper are:

– REGNUM is a novel approach that enhances the expressiveness of the rules gen-
erated by a rule mining system by incorporating numerical constraints expressed
through value intervals. To our knowledge, REGNUM is the first approach to uti-
lize intervals in rules mined from large RDF graphs.

– REGNUM efficiently selects intervals that increase the rule’s confidence using ex-
isting supervised discretization techniques that best distinguish the correct and in-
correct predictions made by the rule.

– Since some value intervals can be too specific to lead to relevant rules, REGNUM
considers both the membership and the non-membership of a value to an interval
to offer more possibilities of generating a rule with high quality.

– The experimental evaluation shows that the numerical rules generated by REG-
NUM using the rules provided by two state-of-the-art rule mining systems, AMIE
and AnyBURL, have a higher overall quality score and can potentially improve
prediction results.

2 Related Work

Rule mining over a dataset has received a lot of attention from researchers, resulting in
many published works on the subject.
Association Rule mining. Association rule mining (ARM) is a widely used data min-
ing technique that identifies frequent patterns among items and transactions based on
a minimum number of observations. It typically generates if-then patterns, represented
by association rules X → Y , indicating that the presence of X suggests the pres-
ence of Y in the same transaction. However, ARM faces challenges when dealing with
numerical attributes since the values of these attributes rarely repeat themselves. To ad-
dress this, a special type of association rule called quantitative association rules have

REGNUM : Numerical Rules in Knowledge graphs 3

been developed, which involves at least one numerical attribute in the rule, such as
(25 < age < 40) ∧ (3K < salary < 5K) → (120K < loan < 200K). Quantitative
association rule mining (QARM) can be achieved through different strategies, includ-
ing discretization-based approaches such as pre-processing steps to partition numerical
data [27] or statistical analysis of variables and distribution of the numerical variables
[2], and optimization-based approaches where numeric attributes are optimized during
the mining process, for instance with the use of genetic algorithms [26], [15], [20].

Nevertheless, these patterns or dependencies are restricted to single variables and
are different from the logical rules relevant to complex relationships present in knowl-
edge graphs.
Inductive logic programming (ILP). Inductive logic programming (ILP) systems
can automatically find rules based on positive and negative examples. For example,
WARMR [7] extends the Apriori algorithm to mine association rules in multiple rela-
tions. Other ILP-based approaches, such as DL-Learner [5], focus on learning expres-
sive concept definitions, including numerical constraints. However, ILP is not suitable
for the open world assumption (OWA) in large KGs, where counter-examples are not
declared, and missing information cannot be treated as negative but rather unknown.
FOL rule on knowledge graphs. Finding logical rules on large knowledge graphs
(KGs) has been addressed in several works that use specific language biases, pruning
criteria, and optimization strategies to scale the rule-mining process.

AMIE [17] is a state-of-the-art rule mining system for KGs. It is fast and exhaustive,
i.e., it mines all connected and closed rules given thresholds defined on quality measures
(e.g., confidence and head coverage) and a specified maximum number of atoms. AMIE
can discover rules that involve constants (e.g., age(x,53)). However, these rules can
be too specific and not interesting when it comes to these predicates. RuDiK [24] pro-
poses a non-exhaustive approach to mine logical rules that are more expressive. RuDiK
can predict the absence of a fact and allows us to perform comparisons beyond equality
by using relationships from the set rel ∈ {<,≤, ̸=,≥, >}. An example of such rules
would be: R1 : p1(x, v0)∧ p2(y, v1)∧ v0 > v1 ⇒ p3(x, y), where v0 and v1 are values
from the KG itself, not thresholds.

Rule mining systems, such as AnyBURL [19], focus only on rules based on graph
paths. AnyBURL is a bottom-up approach that starts with sampling specific paths and
uses generalization techniques to expand it such that the obtained rule has a high con-
fidence. An extension of AnyBURL [18] uses reinforcement learning to sample better
paths from the start. The advantage of these systems is that they are any-time, meaning
they can trade time for rule quality and quantity. However, like AMIE, AnyBURL is
not able to find interesting rules with numerical predicates and can only consider them
as constants.

Another family of rule mining systems is differentiable rule-based inference meth-
ods such as NeuralLP [29]. This body of work maps each entity to a vector and each re-
lation to an adjacency matrix. DRUM [25] proposes changes to the NeuralLP to support
variable-length rules. Another extension, NeuralLP-num [28], can learn rules involving
numerical features. Like RuDiK, these rules can involve negative atoms or make pair-
wise comparisons between numerical values of different atoms in the rules (e.g., R1).
Furthermore, the rules produced by NeuralLP-num can also include classification op-

4 Khajeh Nassiri et al.

erators, which are sigmoid functions over numerical values of atoms with numerical
predicates in the rule. For example, a rule with a classification operator could be of the
form f{y1, y2 : p1(X, y1), p2(X, y2)} > 0.5 ∧ p3(X,Z) ⇒ p4(X,Z) where f is the
sigmoid function and p1 and p2 are numerical predicates.

To the best of our knowledge, RuDiK and NeuralLP-num are the only works in
the literature that can mine interesting rules with numerical predicates on large KGs.
However, both techniques are limited to using numerical values from the knowledge
graph and applying functions or comparisons between them. They are unable to dis-
cover numerical intervals or thresholds as constraints to enhance the quality of the rules
and derive additional knowledge. To fill this gap, REGNUM has been developed to
incorporate such constraints into the rules.

3 Preliminaries

This section presents the definitions and notations used in the rest of the paper.

Definition 1. RDF Knowledge Graph. In an RDF knowledge graph G, a collection
of facts is represented as triples of the form {(subject, predicate, object) | subject ∈ I,
predicate ∈ P , object ∈ I ∪ L} where the set of entities is denoted as I, the set of
predicates is denoted as P , and the set of literals (such as numbers and strings) is
denoted as L. Additionally, we define Pnum as the subset of predicates whose range
consists solely of numerical values.

Definition 2. Atom. An atom is a basic well-formed first-order logic formula of the
form p(X,Y), where p is a predicate1 and X, Y are either constants or variables2. If an
atom’s arguments are constants, the atom is said to be “grounded” and can be treated
as a fact.

Definition 3. (Horn) Rule. A rule r : B ⇒ H is a first-order logic formula where
the body B is a conjunction of atoms B1, ..., Bn and the head H is a single atom.
A rule is closed if every variable appears at least twice in the rule. Two atoms are
connected if they share at least one variable. A rule is connected if all atoms in the rule
are transitively connected.

Definition 4. Prediction of a Rule. Given a rule r : B ⇒ H and a substitution of the
rule σ(r), σ(H) is a prediction for r if all the atoms of σ(B) belong to the knowledge
graph G. A prediction is correct if σ(H) ∈ G.

For a rule r : B ⇒ H , we have the following quality measures as defined in [17].
In the absence of identity links (i.e., owl:sameAs), we assume that the Unique Name
Assumption (UNA) is fulfilled. If identity links exist, a pre-processing step is required
to compute the quality measures and functionality score accurately.

Definition 5. Support. The support supp(r) := |{(x, y) : B ∧ H(x, y)}| measures
the number of correct predictions made by the rule.

1 Membership to a class, can also be represented with a binary predicate, i.e., type(X, Y).
2 Variables are represented using lowercase letters whereas capitalized letters denote constants.

REGNUM : Numerical Rules in Knowledge graphs 5

Definition 6. Head Coverage. Head coverage represents the proportion of instantia-
tions of the head atom that are correctly predicted by the rule.

hc(r) =
supp(r)

|{(x, y) : H(x, y) ∈ G}|

In order to calculate the confidence of a rule, counter-examples are necessary.
Knowledge graphs are based on the open world assumption (OWA), meaning they only
contain positive examples, and missing facts are not necessarily false. We adhere to the
Partial Completeness Assumption (PCA) to account for counter-examples.

Definition 7. Functionality Score. The functionality score of a predicate is a value
between 0 and 1 that measures the ratio of subjects that the property is related to in
G to the total number of triples with that predicate. The inverse functionality score
ifun(p) is the functionality score for the inverse of the predicate p.

fun(p) :=
|{x : ∃y : p(x, y) ∈ G}|
|{(x, y) : p(x, y) ∈ G}|

Under PCA, if a fact p(x, y) ∈ G and if fun(p) > ifun(p), then no other fact for
x holding with the predicate p is correct and can be considered as a counter-example
(i.e., p(x, y′) /∈ G). On the other hand, if ifun(p) > fun(p), then all p(x′, y) /∈ G.

Definition 8. PCA confidence.
The PCA confidence of the rule r measures the precision of the rule under the PCA,

i.e., the ratio of correct predictions or support to the total number of predictions made
by the rule. More precisely, if fun(H) > ifun(H),

pca conf(r) =
supp(r)

|{(x, y) : ∃y′ : B ∧H(x, y′)}|

Based on definition of counter-examples under PCA, if ifun(H) > fun(H), then the
denominator, namely PCA body size, becomes |{(x, y) : ∃x′ : B ∧ H(x′, y)}| in the
above equation.

4 REGNUM

In this section, we describe REGNUM, a system that automatically enriches the con-
nected and closed rules mined on a given knowledge graph, regardless of the method
used to mine them, with numerical predicates by constraining the introduced numeri-
cal values to specified intervals. REGNUM aims to enhance the PCA confidence in the
considered rules while ensuring that the rules do not become overly specific.

4.1 Problem statement

This approach aims to mine numerical rules that are defined as follows:

6 Khajeh Nassiri et al.

Definition 9. Numerical Rule. A numerical rule is a first-order logic formula of the
form: B ∧ C ⇒ H , where B is a conjunction of atoms of the KG and where the range
values of the numerical atoms of B can be constrained using C, conjunction (resp. a
disjunction) of atoms that express their membership (resp. their non-membership) to an
interval [inf, sup].

Example 1. Here are two examples of numerical rules with constraints defined on nu-
merical predicates:
r1 : worksIn(x, y)∧hasPopulation(y, w)∧w ∈ [1000, 5500]∧hasHusband(x, z) ⇒
worksIn(z, y)
r2 : worksIn(x, y) ∧ hasHusband(x, z) ∧ age(z, a) ∧ hasPopulation(y, w) ∧ (w /∈
[1000, 5500] ∨ a /∈ [50,∞]) ⇒ worksIn(z, y)

Generating the complete set of numerical rules that fulfill quality measure thresh-
olds (e.g., minHC and minconf in [17]) can be very time-consuming. This is because
the intervals used to constrain the range of numerical predicates must be recalculated
each time a rule is generalized or refined as the search space is explored. This ensures
that the constraints applied to the rule are appropriate for the updated rule.

To overcome this issue, we propose an approach that builds on the shoulders of the
rules mined by an existing rule-mining technique (i.e., parent rules) and expands the
body of these rules through an enrichment process to generate numerical rules. More
precisely,

– A numerical rule is considered relevant if it improves the PCA confidence of its
parent rule by at least a marginC without its head coverage decreasing more than
marginHC. This criterion guarantees that the rule has higher PCA confidence
than its parent rule while preventing over-fitting the KG.

– The enrichment process of a parent rule is driven by considering diverse sets of
numerical predicates. This means that once a numerical rule involving a particular
numerical predicate p is relevant in a constraint that involves n numerical atoms,
the approach will not consider larger sets of atoms that involve p.

– The search strategy to obtain constraints on the numerical predicates relies on tree-
based algorithms.

4.2 Rule Enrichment with numerical predicates algorithms

Given a knowledge graph G, a set of closed rules R mined from G, called parent rules,
and thresholds marginC and marginHC as introduced in 4.1, our approach REG-
NUM is able to enrich the parent rules in R to obtain relevant and diverse numerical
rules. The algorithm we describe in Algorithm 1 performs the following steps.

(1) Pre-processing step [line 1 in Algorithm 1]. As a pre-processing step, we first
identify the set of numerical predicates, denoted as Pnum in G. We use the domain and
range definition axioms if they are available in the ontology, and if not, we discover
them by considering the range of values they take. We also compute the function-
ality score, as defined in definition 7, for all predicates in the head of the parent rules R.

Then, for each parent rule r ∈ R, we proceed with the following steps.

REGNUM : Numerical Rules in Knowledge graphs 7

Algorithm 1: REGNUM
Input:

– G: knowledge graph
– R: set of parent rules mined on G
– marginHC, marginC: margins on head coverage and PCA confidence

Output: E : set of enriched rules
1 Identify Pnum and compute functionality degree of predicates P
2 E = ∅
3 foreach r : B ⇒ H inR do
4 compute quality measure hc(r) and pca conf(r); compute minHC and minC;

create an empty queue qatoms;
5 for pnum ∈ Pnum do
6 if hc(pnum(xi, xnew) ∧ B ⇒ H) > minHC then
7 Enqueue pnum(xi, xnew) in qatoms

8 end
9 ln = 1 // number of numerical atoms

10 while |qatoms| > ln do
11 for Bnum created by combining ln atoms from qatoms do
12 rs : Bnum ∧ B ⇒ H
13 if hc(rs) > minHC then
14 < X,Y >← construct prediction classes(G, rs);
15 rnodes ← discretize(< X,Y >,minHC,minC);
16 foreach rnode in rnodes do
17 if hc(rnode) > minHC and pca conf(rnode) > minC then
18 add rnode ⇒ H to E ;
19 end
20 end
21 remove from qatoms atoms that resulted in a numerical rule;
22 ln+ = 1

23 end
24 end
25 return E ;

(2) Computation of minHC and minC [line 4 in Algorithm 1]. A numerical
rule obtained by enriching a parent rule r is considered relevant if its PCA confi-
dence increases by at least marginC and if its head coverage does not decrease by
more than marginHC. We first query the KG to compute pca conf(r) and hc(r)
if the rule mining system does not provide them, and we calculate the minHC :
(1−marginHC)∗hc(r) and minC : (1+marginC)∗pca conf(r) that the enriched
rule must satisfy in order to be considered relevant.

(3) Enqueue Numerical Atoms [lines 5–8 in Algorithm 1.] In this step, we find all
possible numerical atoms that can enrich the parent rule and store them in qatoms. We
consider the set of all variables vars = {x1, . . . , xn} that appear in the rule r, and
enqueue all the atoms pnum(xi, xnew) with xi ∈ vars, xnew is a new variable and

8 Khajeh Nassiri et al.

such that the head coverage of pnum(xi, xnew) ∧ B ⇒ H is greater than minHC.
Otherwise, the atom is discarded since its conjunction with other atoms will only lead
to lower head coverage due to monotonicity.

Example 2. Let r1 : workPlace(x1, x2) ⇒ birthPlace(x1, x2), be a parent rule. The
atom involving the numerical predicate hasPopulation with variables x1 will be pruned
as the rule hasPopulation(x1, x3) ∧ workPlace(x1, x2) ⇒ birthPlace(x1, x2) does
not satisfy the minHC.

(4) Selection of numerical atoms and generation of the best intervals [lines 11–
20 in Algorithm 1]. Our objective is to identify relevant numerical rules that meet the
quality measure requirements by utilizing the fewest numerical predicates. To construct
these numerical rules, we iteratively search through the space of possible conjunctions
of atoms in qatoms. We begin with a single numerical atom (ln = 1) and continue
until the queue qatoms does not contain ln atoms or more. At iteration ln, we apply the
following steps:

Enriching r with ln numerical atoms [lines 11–12 in Algorithm 1] We retrieve ln
atoms from qatoms and consider their conjunctions Bnum : pnum1

(xi, xn+1) ∧ . . . ∧
pnuml

(xj , xn+l) to construct:

rs : Bnum ∧ B ⇒ H

We query the knowledge graph and proceed with the enrichment process only if rs
satisfies the minHC as constraining the values of these numerical predicates will not
satisfy minHC either.

Example 3. At iteration 3, we can have rs : worksIn(x, y) ∧ hasHusband(x, z) ∧
hasPopulation(y, w) ∧ age(x, v) ∧ hasRevenue(x, u) ⇒ worksIn(z, y) involving
three different numerical predicates hasPopulation, age and hasRevenue that satisfies
the minHC.

Classification problem based on rule predictions [line 14 in Algorithm 1]. The
rules rs created in the previous step are used to classify the instantiations of Bnum :
pnum1

(xi, xn+1) ∧ . . . ∧ pnuml
(xj , xn+l) as correct or incorrect examples and define

a binary classification problem.
In this classification step, we build a class A to represent the set of instantiations

(xn+1,, xn+l) of the numerical values of Bnum that lead to a correct prediction
H(xa, xb) for the rule rs. The examples of A are defined as follows:

{(xn+1, . . . , xn+l) | B(x1, . . . , xn)∧Bnum(xi, . . . , xj , xn+1, . . . , xn+l)∧H(xa, xb)}

Moreover, we build a class B to represent the set of instantiations (xn+1,, xn+l)
of the numerical values of Bnum that lead to an incorrect prediction for the rule rs under
PCA if the fun(H) > ifun(H), i.e., the predictions H(xa, xb) such that H(xa, xb) /∈
G ∧ ∃ H(xa, x

′
b) ∈ G .

REGNUM : Numerical Rules in Knowledge graphs 9

{ (xn+1, . . . , xn+l) | B(x1, . . . , xn) ∧ Bnum(xi, . . . , xj , xn+1, . . . , xn+l)
∧ ∃ xb′H(xa, x

′
b)}

If ifun(H) > fun(H), we classify the instantiation as incorrect if a fact does not
exist in the KG for the target object and if there exists at least one subject for this object.

Example 4. Let r2 : worksIn(x, y) ∧ hasHusband(x, z) ⇒ worksIn(z, y) be the con-
sidered parent rule. One possible refinement rs of this rule to consider in step 2 would
be: hasPopulation(y, w)∧worksIn(x, y)∧hasHusband(x, z)∧hasRevenue(z, r) ⇒
worksIn(z, y) In this rule, the target variable is z since ifun(worksIn) <
fun(worksIn). Consider the following facts in G: {worksIn(Marie, Lyon),
worksIn(Marie,Gordes), worksIn(Joe, Lyon), hasPopulation(Lyon, 513 000),
hasPopulation(Gordes, 2 000), hasHusband(Marie, Joe),
hasRevenue(Joe, 1500), hasRevenue(Joe, 800)}. The triple worksIn(Joe, Lyon)
is a correct prediction of rs, and for the introduced numerical features <
hasPopulationy,hasRevenuez > the two sets of numerical values (513000, 800), and
(513000, 1500) are examples that belong to class A.
worksIn(Joe,Gordes) is an incorrect prediction. The numerical values (2000, 800)
and (2000, 1500) are examples that belongs to class B. If we do not know where Joe
works, the possible instantiations of the numerical values do not belong to any class.

We generate a data structure < X,Y > that represents for each correct and incorrect
prediction H(xa, xb), the set of numerical values per numerical predicate of Bnum

(since the numerical predicates can be multi-valued), and the label Y .
The correct and incorrect example values are retrieved from the KG through the

queries defined for the label A and B.

Constraining the numerical rule to intervals [lines 16–19 in Algorithm 1]. To obtain
a set of rules for classes A and B defined by a rule rs, we can discretize the values of the
numerical predicates. For this purpose, different methods can be considered, including
decision-tree-based approaches, e.g., CART [4], sequential covering approaches, e.g.,
RIPPER [6], or FURIA [14], QARM techniques introduced in section 2, or other dis-
cretization techniques.

We aim to find the purest intervals that can effectively differentiate between ex-
amples in class A and class B. However, if we limit ourselves to constraints that only
express interval membership for correct groundings of class A, the resulting rule may
have low head coverage if the interval is too specific. On the other hand, if we exclude
intervals that lead to incorrect predictions, we may overlook rules with high confidence
that can enhance the accuracy of predictions in KG completion tasks.

Therefore, we consider both candidate rules. For instance, it is common for people
to work in the city where they were born if that city has between 50,000 and 500,000
inhabitants. However, we can also consider a rule that excludes megacities with over
1,000,000 inhabitants.

Hence, we decided to employ a supervised method to discretize the continuous
values of numerical predicates in Bnum and keep track of the number of correct and

10 Khajeh Nassiri et al.

incorrect predictions falling in each interval to consider both membership and non-
membership constraints. This method involves constructing a univariate CART Deci-
sion Tree (DT), where the numerical predicates serve as features. The DT is binary and
built using impurity-based criteria, specifically entropy, as the splitting criteria.

The root of the tree corresponds to the numerical rs : Bnum ∧ C ∧ B ⇒ H where
C is initially empty. At each split, the instance space is divided into two subspaces by
constraining the range values of one of the atoms in Bnum to the split threshold and
hence updating C. The rules at each child node rnode are created according to the rule
of the parent node and the split made at that node.

More specifically, if a split is made using an atom p(x, y) and a threshold α at
node i, a membership constraint creates a rule for the left child by updating C with
∧ y ∈ [−∞, α] and ∧ y ∈ [α,∞] for the right child. A non-membership constraint,
however, creates the rule for its left child by updating C with ∨ y /∈ [−∞, α] for the
left child and ∨ y /∈ [α,∞] for the right child.

hasPopulation(y,w) w < 500K

hasPopulation(y,w) w < 50K

hasPopulation(y,w) w > 50K

hasRevenue(x,z) z > 3K

hc: 0.3 , pca_conf = 0.4

hc: 0.27 , pca_conf = 0.53

hc: 0.2 , pca_conf = 0.37

hc: 0.24 , pca_conf = 0.63
hc: 0.28 , pca_conf = 0.55

hc: 0.20 , pca_conf = 0.36

hc: 0.20 , pca_conf = 0.36

hc: 0.3 , pca_conf = 0.44

hc: 0.25 , pca_conf = 0.41

hasPopulation(y,w) w > 500K

hc: 0.18 , pca_conf = 0.50

hc: 0.22 , pca_conf = 0.40

Fig. 1. Example of a part of the DT and the considered rules at each node

Example 5. Consider the parent rule r : worksIn(x, y) ⇒ livesIn(x, y) and enrich-
ing the body of r with two predicates r0 : worksIn(x, y) ∧ hasPopulation(y, w) ∧
hasRevenue(x, z). Figure 1 depicts the construction of the rules at each node for a part
of the tree to constrain the values of w and z with membership or non-membership.
The minHC = 0.23 and the minC = 0.5. Node n1 shows the inclusion and exclusion
rules as well as their respective head coverage and PCA confidence constructed using
the constraint hasPopulation < 500K.

Furthermore, we ensure that each node only contains the most concise rule. This
means that if an atom p(x, y) has already been selected for a split in the path from
the root to the child nodes, the constraint already exists in the body of the parent node.
Therefore, instead of adding the constraint, we update the constraint on y (i.e., the range
values of the atom p(x, y)).

REGNUM : Numerical Rules in Knowledge graphs 11

Example 6. At node n5, the rule r23 is expressed as worksIn(x, y) ∧
hasPopulation(y, w) ∧ w ∈ [50K, 500K] ∧ hasRevenue(x, z). At node r22, the rule
is worksIn(x, y) ∧ hasPopulation(y, w) ∧ w /∈ [−∞, 50K] ∧ hasRevenue(x, z).
At node n4, the rule r26 is expressed as worksIn(x, y) ∧ hasPopulation(y, w) ∧
hasRevenue(x, z) ∧ (w /∈ [500K,∞] ∨ z /∈ [3k,∞]).

We use the stopping criteria based on minHC and minC of each node’s inclusion
and exclusion rules to decide when to stop splitting further. To do this, we calculate
the size of class A and B using < X,Y > as defined in the previous step. We stop if
the number of different instantiations for the head that belong to class A is less than
minHC ∗ headsize(r), and if the number for class B is less than pca bodysize(rs)−
supp(rs)
minC . In other words, if neither of the rules can satisfy the expected marginC and

marginHC, we stop splitting.

Example 7. In Figure 1, rule r24 will not appear in node n5 because generalizing r12
with the constraint of the split would not exclude enough incorrect predictions to satisfy
the minC.

We could select all nodes that meet the requirements of minHC and minC. How-
ever, to limit the number of generated numerical rules and avoid redundant rules cov-
ering the same instances, we have implemented a strategy that selects the most general
rules along each path from the root to the leaves. Specifically, we choose the rules with
the highest PCA body size.

Example 8. In Figure 1, rules corresponding to nodes n1, n3, and n4 in Figure 1,
namely r11, r21, and r25 respectively, meet the requirements of minHC and minC.
We include r11 and r25 in E because nodes r11 and r21 are along the same path from
the root, and r11 is the more general rule.

Rule Diversity [line 21 in Algorithm 1]. In order to maintain diversity, after each
iteration, we remove any atoms that have led to a numerical rule with parent rule r that
meets the conditions of minHC and minC from qatoms, as explained in Section 4.1.

5 Experimental Evaluation

We have conducted two groups of experiments. First, we evaluate the quality of the set
of enriched rules vs. their parent rules. The parent rules have been obtained by running
rule mining techniques of AMIE[17] and AnyBURL[18]. Secondly, we have evaluated
the performance of KG completion task using these enriched rule sets.

Datasets. We consider three different benchmark datasets that involve numerical val-
ues. FB15K-237-num and DB15K-num are variants of Freebase and DBPedia knowl-
edge graphs involving numerical predicates and values proposed in [12]. LitWD19K is
one of the three datasets proposed in LiterallyWikidata [13], which is a recent dataset
gathered from Wikidata and Wikipedia with a special focus on literals. Table 1 shows
the statistics for these datasets.

12 Khajeh Nassiri et al.

Dataset |I| |P| |Pnum| |G| |Gt|
DB15K-num 12,867 278 251 79,345 9,789

FB15K-237-Num 14,541 237 116 272,115 1,215
LitWD19K 18,986 182 151 260,039 14,447

Table 1. Statistics of the benchmark datasets.|Gt| denotes the size of test set.

Experimental Setup. All experiments are run on a single machine with a processor
2.7GHz, 8 cores, and 16GB of RAM that runs Mac OS X 10.13. REGNUM is written
in Python and we have used Stardog3 RDF data management system. The source code
and the datasets used in our experiments are publicly available4. The time taken for
rule generation ranges from 20 minutes to 15 hours, depending on the number of parent
rules, their quality, and the KG.

5.1 Rules Quality Assessment

In this first set of experiments, we compare the quality of the parent rules that could
be enriched with the set of enriched rules. Specifically, we compare the percentage of
gain in terms of PCA confidence and head coverage. To measure the overall quality of
the rules, we rely on Fr = 2 ∗ pca conf(r)∗hc(r)

pca conf(r)+hc(r) , which is a harmonic mean between
the pca conf and hc. This is because just a high pca conf or a high hc is not a good
indicator of the overall quality of a rule (i.e., the rule can be too specific or not yield
good predictions).

Setup. We have run AMIE with default values minHC = 0.01 and min pca conf =
0.1, and maximum rule length of 3, on the LitWD19K and DBPedia15K datasets. To
limit the number of parent rules, we used an increased minHC = 0.1 when running
AMIE on FB15K-237-num. As AMIE mines only closed rules, no post-processing of
the rules obtained was needed. We have run AnyBURL with default parameters ex-
cept for the maximum rule length being set to 3, and the rules are learned for 100s
with the min conf = 0.03. We performed post-processing on the obtained rules to
retain only closed rules. REGNUM enriches the parent rules with marginC = 20%,
marginHC = 10%.

Dataset |R| |Renriched| |E| level 1 level 2 level 3 gconf ghc gF
DB15K-num 4,163 402 2,783 2,747 36 0 +38.3% -1.2% +9.9%

FB15K-237-num 9,591 1,187 5,434 4,640 789 5 +28.6% -4.2% +9.8%
LitWD19K 2,481 859 9,068 7,764 1,272 12 +31.2% -2.5% +3.5%

Table 2. Statistic of rules mined by AMIE, compared to numerical rules in terms of the quality
measure.

3 https://www.stardog.com/
4 https://github.com/armitakhn/REGNUM

REGNUM : Numerical Rules in Knowledge graphs 13

Table 2 and Table 3 detail the number of parent rules mined R by AMIE and Any-
BURL, respectively. The number of parent rules that could be enriched with numerical
predicates Renriched and the number of numerical rules obtained by REGNUM E are
also presented. On the three datasets, we compute the average of the rules’ pca conf ,
hc, and F measure of Renriched and on the numerical rules E . In the tables, 2 and 3, we
provide the percentage of improvement of PCA confidence, head coverage, and F mea-
sure of E over parent rules Renriched, denoted by gconf , ghc, and gF , respectively. The
results indicate that the pca conf of the numerical rules increased significantly across
all benchmark datasets, irrespective of the rule mining technique used for obtaining par-
ent rules. This improvement has been achieved without sacrificing much head coverage,
and the overall quality of the rules (F measure) increased.

When we set a more relaxed value for marginHC, we noticed a decrease in the
overall quality of rules. However, we were able to obtain more numerical rules. For
instance, setting marginHC to 20% on FB15K-237-num in table 2 reduces the gF
from 9.8% to 6.22%, but the number of enriched rules increases to 10,141 with 1,744
parent rules that could be enriched.

Dataset |R| |Renriched| |E| level 1 level 2 level 3 gconf ghc gF
DB15K-num 1,539 515 2,184 2,052 132 0 +30.4% -3.5% +3.3%

FB15K-237-num 7,959 1,688 7,252 6,597 654 1 +29.1% -3.5% +8.1%
LitWD19K 1,758 787 7,721 6,407 1,266 48 +29.0% -3.8% +4.5%

Table 3. Statistic of rules mined by AnyBURL, compared to numerical rules regarding the quality
measure.

Approximately 25% of the rules on across all datasets incorporate membership con-
straints that include intervals. For example, the LitWD19K dataset mines 2,585 rules
with membership constraints and 6,483 rules with non-membership constraints using
parent rules from AMIE. Similarly, the AnyBURL dataset comprises 2,157 numerical
rules with membership and 5,564 numerical rules with non-membership. As elaborated
in section 4.2, we expect that membership rules will generally have lower head cov-
erage and higher PCA confidence compared to non-membership rules, which exclude
incorrect predictions. This is demonstrated to be true when we limit the rules to only
inclusion or only exclusion rules. For instance, for the LitWD19K dataset, the member-
ship rules obtained from AMIE parent rules show gconf of 36.8%, and ghc of -3.0%,
whereas for non-membership rules gconf is 30.1%, and ghc is -2.2%. We observe the
same trend in all datasets.

We have also explored the use of the Minimum description length principle (MDLP)
[8], and Optimal Binning [22] as supervised discretization techniques. However, these
methods can only discretize a single numerical predicate at a time and cannot handle
combinations of numerical predicates. To ensure a fair comparison, we have limited the
rules of REGNUM to level 1. We have found that DT can enrich more parent rules by
providing more relevant intervals. For example, on the FB15K-237-num dataset in Ta-
ble 2, using MDLP results in the enrichment of 940 parent rules (|Renriched|), leading
to a total of 7,005 numerical rules (|E|) with a gF of 11.7%. On the same dataset, the

14 Khajeh Nassiri et al.

results of Optimal Binning are |Renriched| = 874, |E| = 3,832, and gF = 12.0%. Finally,
using only REGNUM rules with one numerical predicate (level 1) enriches 1,042 par-
ent rules, resulting in 4640 numerical rules and a gF of 10.13%, which is higher than
the other two methods.

5.2 KG Completion

In this second set of experiments, we focus on the task of knowledge graph completion,
where we aim to evaluate the efficacy of integrating the numerical rules obtained via
REGNUM with the parent rules for knowledge graph completion. KG completion aims
to predict a missing object o in a fact (s, p, o) /∈ G. While most current research on KG
completion employs sub-symbolic approaches that involve embedding the graph into a
low-dimensional vector space, rule-based methods offer the advantage of interpretabil-
ity and explainability.

For each test data (s, p, o), we examine all the rules mined with predicate p in the
head of the rule, i.e., p(x, y). For each such rule, we execute a SPARQL query by
substituting x with the subject of the test data s and obtain a set of predictions generated
by the rule. Each candidate c can be given by a set of rules C = {R1, ..., Rn}. We use
four different aggregation strategies to assign a score to each candidate based on the
rules that predicted them. The aggregation methods we considered are:

1. The democracy aggregation where the score depends on the number of rules that
fired a candidate Sc = |C|.

2. The max-aggregation Sc = max{pca conf(R1), ..., pca conf(Rn)} where the
rule with the highest PCA confidence defines the score.

3. The noisy-or aggregation Sc = 1−
∏n

i=1(1− pca conf(Ri)).
4. The weighted-F aggregation Sc = Σn

i=1
1

#Prediction(Ri)
∗ f(Ri) which penalizes

the rules that result in many predictions (candidates).

The rules with statistics reported in Table 2 are used to find the candidates. To
assess the performance of the rules, we report the Hits@10 result, which is the number
of correct head terms predicted out of the top 10 predictions. Table 4 shows the results
of KG completion on three datasets using the rules mined by AMIE vs. the numerical
rules of REGNUM added to the set of rules of AMIE. The four different aggregations
are used to score the candidates and report the hits@10 results in the filtered setting
(i.e., a prediction that already exists in G or Gt will not be ranked).

On all three datasets, we found that adding the rules of REGNUM to the set of rules
from AMIE improved the performance of knowledge graph completion when using the
Max aggregation method. This suggests that numerical rules can improve predictions.
With the Max aggregation method, we know that whenever a candidate is selected, it is
because a numerical rule of REGNUM with higher confidence than its parent rule has
been chosen. If no numerical rule exists, the parent rule will be chosen.

The marginal benefit of numerical rules on these benchmark datasets can be at-
tributed to the small number of rules that could be enriched, as well as the generic nature
of the datasets that do not heavily rely on numerical predicates for accurate predictions.
Hence, to better understand the impact of the enriched rules, we focus only on the rules

REGNUM : Numerical Rules in Knowledge graphs 15

FB15K-237-num DBPedia15K LitWD19K
AMIE AMIE+REGNUM AMIE AMIE+REGNUM AMIE AMIE+REGNUM

Democ 61.6 61.0 33.8 35.8 31.9 31.6
Max 70.5 71.7 34.5 36.9 32.4 32.6

Noisy-or 68.1 66.9 34.7 37.0 32.5 32.4
Weighted-F 69.1 68.3 34.7 37.0 32.9 32.8

Table 4. Hits@10 results of KG completion with rules of AMIE (R) and numerical rules of
REGNUM with the rules of AMIE (R∪ E)

that could be enriched, Renriched, and use them for knowledge graph completion. Table
5 shows the results using the Max aggregation method, indicating improvements in the
accuracy of knowledge graph completion when enriched rules are combined with their
respective parent rules.

AMIE AMIE+REGNUM
Hits@1 Hits@10 Hits@1 Hits@10

DBPedia15K 4.6 7.7 6.4 10.2
FB15K-237-num 5.5 14.7 6.3 15.3

LitWD19K 12.6 22.5 13.9 23.6
Table 5. Hits@1 and Hits@10 results of KG completion withRenriched andRenriched ∪ E

6 Conclusion and Future Work

In this paper, we introduced REGNUM, a novel approach that builds numerical rules on
the shoulders of the rules mined by a rule-mining system. The parent rules are enriched
with numerical predicates, with their values being constraints to membership or non-
membership to intervals obtained through supervised discretization. We showed that the
enriched rules have a higher average quality and can assist in improving the accuracy
of rule mining systems on the knowledge graph completion task.

Future work will explore alternative methods of obtaining constraints, such as using
sequential covering approaches and applying numerical rules to other domains where
numerical values are crucial for predictions. We also plan to investigate more com-
plex aggregation techniques, such as latent-based Aggregation [3], and consider using
an in-memory database to improve query run-time, as proposed in AMIE3 [17]. Ulti-
mately, we intend to compare our results regarding both run-time and optimality with
an approach that finds optimal intervals while mining the numerical rule. We expect our
approach to be faster but less accurate.

Acknowledgements

This work has been supported by the project PSPC AIDA: 2019-PSPC-09 funded by
BPI-France.

16 Khajeh Nassiri et al.

References

1. Ahmadi, N., Lee, J., Papotti, P., Saeed, M.: Explainable fact checking with probabilistic
answer set programming. CoRR abs/1906.09198 (2019)

2. Aumann, Y., Lindell, Y.: A statistical theory for quantitative association rules. In: Proceed-
ings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. p. 261–270. KDD ’99, Association for Computing Machinery, New York, NY,
USA (1999). https://doi.org/10.1145/312129.312243, https://doi.org/10.1145/
312129.312243

3. Betz, P., Meilicke, C., Stuckenschmidt, H.: Supervised knowledge aggregation for knowl-
edge graph completion. In: European Semantic Web Conference. pp. 74–92. Springer (2022)

4. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees.
Taylor & Francis (Jan 1984)

5. Bühmann, L., Lehmann, J., Westphal, P.: Dl-learner—a framework for inductive learning on
the semantic web. Journal of Web Semantics 39, 15–24 (2016)

6. Cohen, W.W.: Fast Effective Rule Induction. In: In Proceedings of the Twelfth International
Conference on Machine Learning. pp. 115–123. Morgan Kaufmann (1995)

7. Dehaspe, L., Toironen, H.: Discovery of Relational Association Rules, p. 189–208. Springer-
Verlag, Berlin, Heidelberg (2001)

8. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for
classification learning. In: IJCAI (1993)

9. Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in
knowledge bases. In: de Rijke, M., Shokouhi, M., Tomkins, A., Zhang, M. (eds.) Proceed-
ings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM
2017, Cambridge, United Kingdom, February 6-10, 2017. pp. 375–383. ACM (2017)

10. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowl-
edge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

11. Galárraga, L.A., Preda, N., Suchanek, F.M.: Mining rules to align knowledge bases. In: Pro-
ceedings of the 2013 workshop on Automated knowledge base construction, AKBC@CIKM
13, San Francisco, California, USA, October 27-28, 2013. pp. 43–48. ACM (2013)

12. Garcı́a-Durán, A., Niepert, M.: Kblrn: End-to-end learning of knowledge base representa-
tions with latent, relational, and numerical features. In: Proc. of the 34th Conference on
Uncertainty in Artificial Intelligence (UAI) (2018)

13. Gesese, G.A., Alam, M., Sack, H.: Literallywikidata - a benchmark for knowledge graph
completion using literals. In: The Semantic Web – ISWC 2021. pp. 511–527. Springer Inter-
national Publishing, Cham (2021)

14. Hühn, J., Hüllermeier, E.: FURIA: an algorithm for unordered fuzzy rule in-
duction. Data Mining and Knowledge Discovery 19(3), 293–319 (Dec 2009).
https://doi.org/10.1007/s10618-009-0131-8, https://doi.org/10.1007/
s10618-009-0131-8

15. Jaramillo, I.F., Garzás, J., Redchuk, A.: Numerical association rule mining from
a defined schema using the vmo algorithm. Applied Sciences 11(13) (2021).
https://doi.org/10.3390/app11136154

16. Khajeh Nassiri, A., Pernelle, N., Saı̈s, F., Quercini, G.: Generating referring expressions from
rdf knowledge graphs for data linking. In: The Semantic Web – ISWC 2020 (2020)

17. Lajus, J., Galárraga, L., Suchanek, F.: Fast and exact rule mining with amie 3. In: Harth, A.,
Kirrane, S., Ngonga Ngomo, A.C., Paulheim, H., Rula, A., Gentile, A.L., Haase, P., Cochez,
M. (eds.) The Semantic Web. pp. 36–52. Springer International Publishing, Cham (2020)

18. Meilicke, C., Chekol, M.W., Fink, M., Stuckenschmidt, H.: Reinforced anytime bottom up
rule learning for knowledge graph completion. arXiv preprint arXiv:2004.04412 (2020)

REGNUM : Numerical Rules in Knowledge graphs 17

19. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule
learning for knowledge graph completion. In: Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-19. pp. 3137–3143 (7 2019)

20. Minaei-Bidgoli, B., Barmaki, R., Nasiri, M.: Mining numerical association
rules via multi-objective genetic algorithms. Information Sciences 233, 15–24
(2013). https://doi.org/https://doi.org/10.1016/j.ins.2013.01.028, https://www.
sciencedirect.com/science/article/pii/S0020025513001072

21. Muggleton, S.: Learning from positive data. In: Inductive Logic Programming. pp. 358–376.
Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

22. Navas-Palencia, G.: Optimal binning: mathematical programming formulation
abs/2001.08025 (2020), http://arxiv.org/abs/2001.08025

23. Ortona, S., Meduri, V.V., Papotti, P.: Robust discovery of positive and negative rules in
knowledge bases. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE).
pp. 1168–1179 (2018)

24. Ortona, S., Meduri, V.V., Papotti, P.: Rudik: Rule discovery in knowledge bases. Proc. VLDB
Endow. 11(12), 1946–1949 (Aug 2018)

25. Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: End-to-End Differentiable
Rule Mining on Knowledge Graphs. Curran Associates Inc., Red Hook, NY, USA (2019)

26. Salleb-Aouissi, A., Vrain, C., Nortet, C.: Quantminer: A genetic algorithm for mining quan-
titative association rules. In: IJCAI. pp. 1035–1040 (2007)

27. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In:
ACM SIGMOD Conference (1996)

28. Wang, P.W., Stepanova, D., Domokos, C., Kolter, J.Z.: Differentiable learning of numerical
rules in knowledge graphs. In: International Conference on Learning Representations (2020),
https://openreview.net/forum?id=rJleKgrKwS

29. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base
reasoning. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 30. Curran
Associates, Inc. (2017)

30. Zeng, Q., Patel, J.M., Page, D.: Quickfoil: Scalable inductive logic programming. Proc.
VLDB Endow. 8(3), 197–208 (2014)

