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Abstract. We describe how we used a Triple Pattern Fragments (TPF)
interface and the Comunica knowledge graph querying framework to en-
able live SPARQL queries over ConceptNet, one of largest knowledge
graphs for commonsense reasoning publicly available on the Web. De-
spite being a Linked Data resource, the official ConceptNet is not pub-
lished in RDF and does not support SPARQL. Instead, it provides a
RESTful API for live queries, which are restricted to simple triple pat-
terns. This limited API makes it hard for users to search for non-trivial
patterns in the graph and hinders the possibility of federated queries
offered by SPARQL. There have been attempts to convert ConceptNet
to RDF but such proposals tend to quickly become obsolete. In this pa-
per, we take a different route. We use TPF to expose a low-level RDF
query interface to ConceptNet. This low-level interface is built on top
of the ConceptNet API and can be used by TPF-compatible SPARQL
engines such as Comunica. Using this approach, we were able evaluate
non-trivial SPARQL queries, including federated queries, over Concept-
Net on-the-fly. Our experiments showed that overhead incurred is small
and can be further reduced by optimizing ConceptNet’s internal edge
representation. We argue that such overhead is justified by the gains in
expressivity and flexibility. Moreover, the overall approach is general and
can be extended to other non-RDF knowledge graphs.

Keywords: ConceptNet · RDF · Linked Data Fragments · Triple Pat-
tern Fragments · Comunica · SPARQL

1 Introduction

ConceptNet [17] is a large public knowledge graph describing commonsense
knowledge and its expression in various natural languages. It is a valuable re-
source for natural language processing applications in general, such as those
based on word embeddings [18], and in particular for applications that seek
to emulate the kinds of commonsense reasoning performed by humans. These
applications include question-answering [9,2], sentiment analysis [21], reading
comprehension [1], image understanding [27], etc.
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To access ConceptNet, users and applications can either use its live query
interface or download one of its data dumps. The latter is the best approach
if one is interested in processing the graph offline. However, for applications
that want to query ConceptNet without ingesting the whole graph, the simplest
approach is to use its live query interface (the ConceptNet API). This interface
consists of a RESTful API [6] which accepts queries restricted to a single triple
pattern, i.e., a combination of subject, predicate, and object. The triple pattern
is matched against the components of edges in the graph and the results are
returned in JSON-LD [19] format.

In this paper, we are concerned with overcoming what we think are the two
main limitations of ConceptNet’s live query interface: (i) its low expressivity and
(ii) its lack of support for RDF [4] and SPARQL [26]. The first limitation makes
it hard for users and applications to search for non-trivial patterns in the graph,
while the second complicates the integration of ConceptNet into the Semantic
Web ecosystem. The lack of support for SPARQL, in particular, hinders the
possibility of more expressive queries and also of federated queries [15], which
would allow users to match external references in ConceptNet against resources
in DBpedia [8], Wikidata [25], WordNet [11], etc.

We remark that the absence of RDF support in ConceptNet is by design.
It is a consequence of the choice of a relational database (PostgreSQL3) as its
storage system. Although there have been proposals for converting ConceptNet
to RDF [13,3], adopting one of these would require significant changes to its
code base, including switching to a different storage system. That said, since
ConceptNet 5.5.0, released in 2016, the lack of support for RDF is no longer
a big issue. Version 5.5.0 changed the format of query responses to JSON-LD
which can be easily converted to RDF on the client side [10].

The lack of support for SPARQL, however, is not so simple to overcome.
Here is what the FAQ section of ConceptNet’s documentation says about this:4

“Can ConceptNet be queried using SPARQL? No. SPARQL is computa-
tionally infeasible. Similar projects that use SPARQL have unacceptable
latency and go down whenever anyone starts using them in earnest.”

Indeed, SPARQL is known to be computationally intractable (query evaluation
is PSPACE-complete [14]) but so is SQL (query evaluation in the relational
calculus is also PSPACE-complete [22]). The problem is not with SPARQL per
se but with exposing on the public Web what essentially is the query interface of
the underlying database. Interestingly, the compromise reached by the designers
of ConceptNet of exposing only a limited, triple pattern-based query interface
is precisely the compromise advocated by the proponents of the Triple Pattern
Fragments interface [24]:

“Between the two extremes of data dumps and SPARQL endpoints lies
a whole spectrum of possible (unexplored) Web interfaces. [. . . ] Offering

3 https://www.postgresql.org/
4 https://github.com/commonsense/conceptnet5/wiki/FAQ

https://www.postgresql.org/
https://github.com/commonsense/conceptnet5/wiki/FAQ
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triple-pattern-based access to RDF knowledge graphs seems an interest-
ing compromise because (i) triple patterns are the most basic building
block of SPARQL queries, and (ii) servers can select triples that match
a given pattern at low processing cost.”

As suggested above, Triple Pattern Fragments (TPF) are a low-cost inter-
face to RDF triples. They were introduced in the context of the Linked Data
Fragments [23] framework with the goal of enabling the construction of reliable
applications over public knowledge graphs. One crucial advantage of providing
a TPF interface instead of a custom query interface, like ConceptNet API, is
that the TPF results can be consumed by any TPF-compliant client, and this
includes client-side SPARQL engines, like Comunica [20] and TPF client [24]. In
this sense, TPF can be seen as a means of obtaining support for SPARQL.

This combination of TPF with a client-side SPARQL engine is exactly the
approach we propose here for enabling live SPARQL queries over ConceptNet. To
evaluate this proposal, we extended the TPF server Server.js5 with a new data-
source plugin6 (released under the open-source MIT license) which allows it to
communicate with the ConceptNet API. We then used the Comunica SPARQL
engine [20] to create a SPARQL endpoint pointing to our modified TPF server.
This setup is illustrated in Figure 1.

User

SPARQL
Endpoint

TPF
Server

ConceptNet
API

(1) (2) (3)

Fig. 1. The proposed approach for enabling SPARQL over ConceptNet.

We tested the viability of this setup through experiments that measured the
overhead introduced at (1) and (2) in comparison to (3). The results indicate that
the overhead is small and can be further reduced by simplifying the way edges
are stored internally by ConceptNet. We argue that these overheads are justified
by the gains in expressivity and flexibility obtained. Queries submitted at (1),
for example, can contain any SPARQL feature supported by the query engine
which, in the case of Comunica, includes property paths, filters, federation, etc.
Also, the overall approach is general and can be extended to other non-RDF
knowledge graphs.

The rest of the paper is organized as follows. Section 2 presents some back-
ground on the ConceptNet API, TPF, and Comunica. Section 3 presents our
proposal and implementation. Section 4 presents the experimental evaluation
and discusses its results. Section 5 discusses some related work. Finally, Sec-
tion 6 presents our conclusions and future work.
5 https://github.com/LinkedDataFragments/Server.js
6 https://github.com/IBM/tpf-conceptnet-datasource

https://github.com/LinkedDataFragments/Server.js
https://github.com/IBM/tpf-conceptnet-datasource
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2 Background

2.1 ConceptNet API

ConceptNet [17] is a knowledge graph for commonsense reasoning that connects
words and phrases in various languages using relations like “is a”, “used for”,
“part of”, etc. It originated from the MIT Media Lab’s Open Mind Common
Sense (OMCS) project [16] and has since been expanded with facts from many
other resources, including Wikitionary7, WordNet [11], DBpedia [8], etc.

The easiest way to query ConceptNet is through its public RESTful API.
The latest version of the API (5.8.1) accepts simple requests like:

https://api.conceptnet.io/query?start=/c/en/cat&end=/c/en/milk

This particular request asks for all edges in the graph whose start node is “cat”
(/c/en/cat) and end node is “milk” (/c/en/milk). Its response is a JSON-LD
document which, among other things, contains this edge:

{ "@id": "/a/[/r/Desires/,/c/en/cat/,/c/en/milk/]",
"start": { "@id": "/c/en/cat", ... },
"rel": { "@id": "/r/Desires", ... },
"end": { "@id": "/c/en/milk", ... }, ... }

This edge asserts that “cat” is related via “desires” to “milk”. As illustrated here,
every ConceptNet edge is directed and consists of a start node (start), a relation
(rel), and an end node (end). The edge also has an id (derived from start, rel,
and end) and can contain extra information like its weight (reliability measure),
provenance (list of sources), etc.

The ConceptNet API supports essentially two kinds of queries:

1. Start-rel-end queries. These are queries in which any of the parameters
start, rel, and end are given. The previous query is an example of such a
query. It sets the parameter start to “cat” and end to “milk”, which instructs
the API to search for any edges leaving “cat” and reaching “milk”.

2. Node-other queries. These are queries in which any of the parameters node
or other are given. If only node or only other is given, the API searches for
edges where the start or end of the edge matches the parameter. For example,
the query ?node=/c/en/cat asks for edges where the start or end node is
“cat”. If both node and other are given, the API searches for edges where the
start and end match the parameters regardless of their order. For example,
the query ?node=/c/en/cat&other=/c/en/animal searches for any edges
connecting “cat” and “animal” in either direction.

Start-rel-end queries can be seen as equivalent to SPARQL queries that con-
tain a single triple-pattern, while node-other queries correspond to disjunctive
SPARQL queries (i.e., queries that use the UNION operator to test for a match
in either of the directions).
7 https://en.wiktionary.org/

https://api.conceptnet.io/query?start=/c/en/cat&end=/c/en/milk
https://en.wiktionary.org/
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By default, the ConceptNet API returns at most 50 edges per request. This
number can be increased up to 1000 using the limit parameter. When the
number of edges exceeds the limit, the extra results are put in separate pages
which can be accessed either by setting the offset parameter in the request or
by using the “next page” link returned at the end the JSON-LD response.

2.2 Triple Pattern Fragments

Triple Pattern Fragments (TPF) [24] are a lightweight interface to RDF graphs.
They are part of the Linked Data Fragments (LDF) [23] initiative and were
proposed as an intermediate alternative to RDF data dumps and SPARQL end-
points. LDF itself is a framework for the conceptual analysis of Linked Data
interfaces. According to LDF, any such interface publishes only parts, or (linked
data) fragments, of a given knowledge graph. These fragments are considered the
“units of response” of the interface and are assumed to consist of three things:

1. Data: a subset of the triples of the graph;
2. Metadata: triples describing the data; and
3. Controls: links and forms that can be used to retrieve other fragments of the

same or other knowledge graphs.

For example, a data dump of a knowledge graph can be described as single linked
data fragment where the data is the whole content of the dump, the metadata
consists of things like version, author, etc., and the controls are empty. Similarly,
the response to a SPARQL CONSTRUCT query can be seen as a fragment where
the data are the resulting triples, the metadata is empty, and the controls are
any parameters used to paginate the result, such as limits and offsets.

A TPF interface provides access to an RDF graph based on a single triple-
pattern. A triple-pattern is a pattern of the form (s, p, o) where s, p, and o
are either fixed values (URIs or literals) or anonymous variables. When given
a triple-pattern, the TPF interface responds with a fragment in which (i) the
data are triples in the graph that match the pattern; (ii) the metadata are an
estimate of the total number such triples; and (iii) the controls are a hypermedia
form that allows clients to retrieve other fragments matching the same pattern.

Some popular knowledge graphs, like DBpedia [8] and Wikidata [25], already
provide TPF interfaces. (Other public TPF interfaces can be found here8.) Take
the Wikidata TPF interface, for example. We can query it using a request like:

https://query.wikidata.org/bigdata/ldf?predicate=wdt:P31&object=wd:Q5

This request asks for every triple in Wikidata whose predicate component is
wdt:P31 (instance of) and object component is wd:Q5 (human). That is, it selects
the triples matching the pattern “(s, wdt : P31, wd : Q5)” for any value of s. In
other words, the triples such that subject s is an instance of human. The response
to this specific request is a single linked data fragment containing usually 100
8 https://linkeddatafragments.org/data/

https://query.wikidata.org/bigdata/ldf?predicate=wdt:P31&object=wd:Q5
https://linkeddatafragments.org/data/
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triples matching the pattern. For instance, if you open the above URI in a Web
browser, an HTML page with the matched triples will be shown. At the bottom
of the page, you will see links (controls) to other pages (fragments) which contain
the rest of the result. The actual format of the response depends on the value of
the “Accept” header provided to the server in the HTTP request. This can be set
to any of the popular RDF serialization formats, such as Turtle and JSON-LD.

Some TPF interfaces also support quad-patterns of the form (s, p, o, g) which
take an additional parameter g specifying a named graph of an RDF dataset. If
not set, g is assumed to be the default graph.

The advantage of TPF over other Linked Data interfaces is that it offers
some query capability while being extremely lightweight. It is more convenient
than a data dump and, it can be argued, it provides a more reasonable Web API
than SPARQL in the sense that it exposes only a limited interface to the un-
derlying database. A further advantage has to do with caching. Because of their
restricted syntax TPF requests are more cache-friendly than SPARQL requests.
For instance, just by looking at the requested URI, it is straightforward for an
HTTP proxy to determine whether two TPF requests are identical. The same
cannot be said about SPARQL where there are many different ways to write
essentially the same query.

2.3 Comunica

Comunica [20] is an advanced knowledge graph querying framework written in
JavaScript and released under the open-source MIT license.9 It is not tied to
any particular storage system and can even run in the browser. Rather than
functioning as a query engine itself, Comunica is a meta query engine that allows
the creation of query engines by providing a set of modules that can be wired
together in a flexible manner. The biggest differentiator of Comunica, however,
is its support for federated queries over heterogeneous interfaces in which one
can evaluate a federated SPARQL query over multiple interfaces, including TPF
interfaces, SPARQL endpoints, and data dumps.

Comunica has full support for SPARQL 1.0 and implements a large subset of
SPARQL 1.110. It also has numerous other features, including support for other
query languages (i.e., GraphQL), reasoning, etc. In this paper, however, we use
Comunica mainly to evaluate simple (but non-trivial) SPARQL queries over our
custom TPF interface which acts as a proxy to the ConceptNet API.

3 Proposal and Implementation

Our proposal to enable SPARQL queries over ConceptNet was summarized in
Figure 1 of Section 1. The idea is to build a TPF interface on top of the Con-
ceptNet API. Then use a TPF-compatible SPARQL engine to create a SPARQL
endpoint pointing to the TPF interface. A more detailed view of this proposal
is given in Figure 2.
9 https://github.com/comunica/comunica

10 https://comunica.dev/docs/query/advanced/specifications/

https://github.com/comunica/comunica
https://comunica.dev/docs/query/advanced/specifications/
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1.1.2: JSON-LD results

1.1: TPF request
1.1.1: API query

1: SPARQL query

Fig. 2. The proposed approach for enabling SPARQL over ConceptNet. (Detailed)

To evaluate a SPARQL query over ConceptNet, the user sends a request to
the SPARQL endpoint (1). This triggers one or more (triple-pattern) requests
to our custom TPF server (1.1) each of which is translated into an equivalent
(start-rel-end) query and sent to the ConceptNet API (1.1.1). As we mentioned
previously, ConceptNet uses PostgreSQL as its storage system. So, each API
query gives rise to one or more SQL queries (1.1.1.1) which are resolved by
the PostgreSQL server. The other direction is similar: PostgreSQL’s results are
translated to JSON-LD (1.1.2), then to RDF triples (1.2), and finally to SPARQL
results (1.3) which are delivered to the user.

The key element here is the TPF server. It needs to convert TPF queries,
results, and controls into equivalent ConceptNet queries, results, and controls.
In our case, we chose the TPF server Server.js.11 We extended it with a new
datasource that handles the input-output conversion and communication with
the ConceptNet API. As the TPF-enabled SPARQL engine, we chose Comu-
nica [20].

The rest of this section describes the challenges we had to overcome to imple-
ment the TPF protocol over the ConceptNet API. We describe two versions of
this implementation. The first version, which we call vanilla, makes only minor
changes to ConceptNet itself. The second version, which we call simplified, ex-
poses the same API as the vanilla version but, in an attempt to speed up query
evaluation, changes the way ConceptNet edges are represented in PostgreSQL.

3.1 The ConceptNet TPF Datasource

To create a TPF interface for ConceptNet, we extended the TPF server Server.js
with a new datasource, called ConceptNet Datasource (MIT license).12 In the
Server.js architecture, the datasource is the component responsible for generating
a stream of RDF triples from a given triple- or quad-pattern. The Server.js
distribution comes with built-in datasources for generating triples from SPARQL
endpoints and RDF files (including compressed HDT files [5]).

11 https://github.com/LinkedDataFragments/Server.js
12 https://github.com/IBM/tpf-conceptnet-datasource

https://github.com/LinkedDataFragments/Server.js
https://github.com/IBM/tpf-conceptnet-datasource
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Every Server.js datasource must implement the method _executeQuery(p, s)
which takes the triple- or quad-pattern p, evaluates it over the underlying storage
interface (SPARQL endpoint, RDF file, etc.), and writes the resulting triples
asynchronously to the RDF stream s together with an approximate count of
the total number of such triples. In the case of our ConceptNet Datasource,
when _executeQuery is called, the datasource (i) converts the pattern p into a
start-rel-end query; (ii) sends the start-rel-end query to the ConceptNet API;
(iii) awaits for the API’s JSON-LD response and when it arrives (iv) converts
the edges in the response into triples; and finally (v) writes the resulting triples
into the stream s. The datasource also writes into s’s metadata the total number
of triples that will be eventually produced by the query.

We had to solve two issues to implement the behavior we have just described.
The first one was the conversion of ConceptNet edges into RDF triples. Concept-
Net uses a heavily reified representation for edges which, besides the endpoints
(start and end) and label (rel), contain information like weight, license, list of
sources (provenance), etc. This means that the standard conversion of a JSON-
LD edge to RDF produces a complex result, usually consisting of many triples.
Because this would complicate the format of the SPARQL queries, and because
in this paper we are mainly interested in the edge data (instead of its meta-
data), we decided to extract just the ids of the start, rel, and end parts of the
edge and, when necessary, make them into valid URIs by prefixing the names-
pace “http://conceptnet.io/”. So, for example, the JSON-LD edge listed at
the beginning of Section 2.1, which connects “cat” and “milk” via “desires”, is
translated into the RDF triple:

<http://conceptnet.io/c/en/cat>
<http://conceptnet.io/r/Desires>
<http://conceptnet.io/c/en/milk> .

The other issue we had to deal with while implementing the ConceptNet
Datasource was obtaining the edge count of ConceptNet API queries. This count
is returned by the TPF server as metadata and is used by TPF clients, such as
Comunica, to optimize their query plan. Currently, the only way to obtain this
information is by going through all the pages of the response adding up their
edge counts. This of course is impractical. What we did then was to extend
the ConceptNet API with a new count call which takes a query and returns
the total number of matched edges (computed by PostgreSQL). For instance, a
call to this count endpoint with the query start=/c/en/cat will trigger a SQL
query in PostgreSQL that uses the COUNT function to count rows from the
table of edges where the column start contains the string identifier /c/en/cat.
The syntax of the count call is the same as that of the regular query call. The
only difference is that its target URI ends in /query/count instead of /query.

The configuration we have just described is what we call vanilla. It consists of
the ConceptNet TPF Datasource running on top of the original ConceptNet API
extended with the /query/count API call. The other configuration or version
we consider is the simplified version, which we describe next.
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3.2 The Simplified Version

In the simplified version, the ConceptNet TPF Datasource runs on top of an
optimized version of the ConceptNet API.13 The syntax of this optimized ver-
sion is the same as that of the vanilla API, i.e., it still consists of /query and
/query/count calls, but the calls themselves are implemented differently. They
use an alternative database table (actually, a materialized view) to obtain edge
information. Before detailing the contents of this alternative table and the ad-
vantages of using it, we need to describe the layout of the tables involved in the
process of query evaluation in the original, vanilla ConceptNet API.

Nodes

PK id : int

uri : text

Edges

PK id : int

FK relation_id : int

FK start_id : int

FK end_id : int

uri : text

weight : real

data : jsonb

Relations

PK id : int

uri : text

Edges_gin

FK edge_id : int

weight : real

data : jsonb

Fig. 3. Database tables involved in query evaluation in vanilla ConceptNet.

The entity-relationship diagram of the vanilla database tables is depicted in
Figure 3. The tables Edges and Edges_gin store edge data, Relations stores rela-
tion (predicate) data, and Nodes stores node data. The important thing to note
is the “data” field present in Edges and Edges_gin. This field stores a JSON ob-
ject similar to the one presented in Section 2.1 and is the field used for matching
the query parameters in the vanilla version of /query and /query/count API
calls. More specifically, in the vanilla version, queries are evaluated by first join-
ing Edges and Edges_gin and then searching for the requested pattern within
the JSON object stored in the data field. These JSON objects are indexed with
GIN indices14 which allows for efficient matching over composite objects using
the containment operator “@>”.

The reason for using this JSON-based matching approach, instead of sim-
ply matching the URIs in the Nodes and Relations tables, is that the vanilla
API supports partial matches. For example, using the vanilla API, if we ask
for edges matching ?start=/c/en/cat the API returns not only edges whose
start node is /c/en/cat but also any edge whose start node id is prefixed by

13 https://github.com/IBM/tpf-conceptnet-datasource/tree/main/
simplified-conceptnet5

14 https://www.postgresql.org/docs/current/datatype-json.html

https://github.com/IBM/tpf-conceptnet-datasource/tree/main/simplified-conceptnet5
https://github.com/IBM/tpf-conceptnet-datasource/tree/main/simplified-conceptnet5
https://www.postgresql.org/docs/current/datatype-json.html
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/c/en/cat including, for example, /c/en/cat/n/wn/animal. The idea here is
that /c/en/cat/n/wn/animal, i.e., the term “cat” interpreted as the noun (/n)
used to name an animal (/animal) according to WordNet (/wn), is a more spe-
cific, disambiguated version of the term /c/en/cat (“cat”).

In the simplified version, we wanted to avoid this partial matching feature for
two reasons. First, because it is not compatible with the exact URI matches per-
formed by SPARQL, and second because it complicates query evaluation. Thus,
assuming that the support for partial matches was not desirable, we copied the
contents of the data field to the columns of a new table, actually a material-
ized view, called Simplified_edges. This view is essentially the union of Edges,
Nodes and Relations with indexes in the columns “start_uri”, “rel_uri”, and
“end_uri”. We then implemented simplified versions of the API calls /query
and /query/count which use the Simplified_edges view instead of the original
tables. A further advantage of this approach is that it eliminates the need for
join operations during query evaluation.

4 Evaluation

In this section, we describe the experimental evaluation of our proposal. Our
main goal was to measure the overhead in query evaluation time introduced by
the TPF Server (extended with our ConceptNet TPF datasource) and by the
SPARQL endpoint (Comunica) in comparison to the ConceptNet API.

We did two experiments, A and B, which dealt with the evaluation of start-
rel-end and node-other queries, respectively. For each experiment, a pool of
queries was generated by (i) selecting random triples in ConceptNet, (ii) masking
some of their components, and (iii) counting the associated number of matches.
We then picked enough queries from the pool to obtain a uniform distribution
of queries with match-counts ranging from 1 to an upper limit of 12K matches
in the vanilla ConceptNet.

The setup of both experiments was the same. We used an OpenShift cluster
to run the following:

1. A private instance of ConceptNet15 (API plus PostgreSQL server) with the
modifications discussed in Section 3, deployed with 20GiB of memory.

2. One instance of the TPF server Server.js16 extended with our ConceptNet
TPF datasource, deployed 24GiB of memory. This TPF instance provided
two endpoints: a vanilla TPF pointing to the vanilla ConceptNet API and a
simplified TPF pointing to the simplified API.

3. Two instances of Comunica17, each deployed with 8GiB of memory; one
instance (vanilla Comunica) pointing to the vanilla TPF endpoint, and the
other (simplified Comunica) pointing to the simplified TPF endpoint.

4. One instance of the script used to run the queries and collect the results.
15 https://github.com/commonsense/ConceptNet5 (fda1b39, Sep. 7, 2021.)
16 https://github.com/LinkedDataFragments/Server.js (b8cc6e3, Nov. 11, 2022.)
17 https://github.com/comunica/comunica (e4b91d5, Nov. 25, 2022.)

https://git hub.com/commonsense/ConceptNet5
https://github.com/LinkedDataFragments/Server.js
https://github.com/comunica/comunica
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To minimize the influence of network conditions, we ran the evaluation script
in the same cluster as the servers, and we turned off the caches of the TPF server
and Comunica. The numbers below constitute thus a worst-case scenario.

Both experiments used a fixed page size with 100 results per page. As re-
marked in [24], pages should be kept reasonably sized to not overload clients.
We chose the value of 100 because it is default page size used by the TPF server
Server.js. Note that the page size also determines the number of requests neces-
sary to consume the full response of a query. For example, if a query produces
1000 results, with a page size of 100 it takes 10 HTTP requests (10 pages) to
consume all of its results.

Next, we describe Experiments A and B in detail and discuss their results. At
the end of the section, we present examples of more expressive SPARQL queries
and discuss informally their evaluation using the same experimental setup.

4.1 Experiments A and B

For Experiment A, we used the method described above to generate 432 random
start-rel-end queries with results ranging from 1 to about 10K matched edges in
the vanilla ConceptNet. We then translated each of these queries into equivalent
TPF and SPARQL queries and evaluated each version of a same query using
both the vanilla configuration and the simplified configuration. The aggregated
results of 5 runs of each query is shown in Figure 4.

For Experiment B, we generated 382 random node-other queries with results
ranging from 1 to about 10K matched edges in the vanilla ConceptNet. Node-
other queries cannot be represented directly in TPF but can be emulated by
disjunctive SPARQL queries, i.e., using the UNION operator to match the pattern
in either direction of the edge. So, for Experiment B, we translated each query
into an equivalent (disjunctive) SPARQL query and, as before, evaluated the
versions of a same query using both the vanilla configuration and the simplified
configuration. The aggregated results of 5 runs of the 382 random node-other
queries are shown in Figure 5.

Analysis We start by analyzing the overhead of the TPF queries in Exper-
iment A. As shown in Table 1, the average (median) difference between the
evaluation time of vanilla TPF vs vanilla ConceptNet in Experiment A is 6.2s,
and between simplified TPF vs vanilla ConceptNet is 5.6s. In other words, the
simplification discussed in Section 3.2 contributed to an average reduction (delta)
of 0.6s in the evaluation time of TPF queries.

Consider now the overhead of Comunica queries in Experiments A and B. The
average difference between the evaluation time of vanilla Comunica vs vanilla
ConceptNet is 9.5s in A and 4.4s in B, while the average difference between
simplified Comunica vs vanilla ConceptNet is 3.6s in A and 3.1s in B. Hence,
the proposed simplification seems to have contributed to an average reduction
(delta) of 5.9s in the evaluation time of start-rel-end queries and of 1.3s for node-
other queries using Comunica. This is a significant reduction considering that
the average time of vanilla Comunica queries is 15.6s in A and 13.6s in B.
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Fig. 4. Experiment A: Aggregated results of 5 runs of 432 random start-rel-end queries.
The markers indicate the median of the 5 runs. The “query #” axis represents each one
of the 432 queries sorted by the number of edges they return. Evaluation time (left)
vs edge count (right). Vanilla ConceptNet API, TPF, Comunica (above) vs simplified
ConceptNet API, TPF, Comunica (below).

Table 1. Average (median) overhead versus vanilla ConceptNet.

TPF (A) Comunica (A) Comunica (B)
Vanilla 6.2s 9.5s 4.4s

Simplified 5.6s 3.6s 3.1s
delta 0.6s 5.9s 1.3s

Surprisingly, the proposed simplification seems to affect more the first request
performed by Comunica than the others. This first request is an empty request
which Comunica uses to determine the type of the underlying endpoint. We
noticed that this empty request, which is essentially a triple-pattern in which
the three components are variables, takes about 3 times longer in the vanilla
API than in the simplified API. To make matters worse, Comunica not even
uses the results of this request, only its metadata. This suggests further paths
for optimization. For example, we could extend the ConceptNet API to handle
empty requests in an optimized manner; or we could modify Comunica to avoid
such requests altogether by hard-coding in it the service metadata.

We conclude this analysis section by explaining two oddities in Figures 4
and 5. The attentive reader might have noticed that Comunica sometimes seems
to beat the ConceptNet API. This of course is impossible, as its requests should
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Fig. 5. Experiment B : Aggregated results of 5 runs of 382 random node-other queries.
The markers indicate the median of the 5 runs. The “query #” axis represents each
one of the 382 queries sorted by the number of edges they return. Evaluation time
(left) vs edge count (right). Vanilla ConceptNet API, Comunica (above) vs simplified
ConceptNet API, Comunica (below).

take at least the same time as those of the underlying API. The explanation is
that Comunica uses parallel requests, while the results shown for ConceptNet
and TPF assume serial requests. That said, even if the ConceptNet and TPF
numbers could have been reduced via parallel requests, the overall improvement
induced by our proposed simplification would still apply. Also, the support for
parallel requests should count as a feature of the client and might not always be
available (e.g., it is not supported by the TPF server).

The second oddity concerns the edge counts for the vanilla Comunica in
Figures 4 and 5, which seem to be smaller than those of ConceptNet for some
queries. This is due to the partial match feature of vanilla ConceptNet which was
explained in Section 3.2. Some vanilla queries return URIs which do not match
the URIs in the pattern exactly. Different than the TPF server, Comunica always
checks the returned URIs and discard those not matching the pattern exactly.
This explains the difference in the number of results for some queries.

4.2 More Expressive SPARQL Queries

We now present some queries that illustrate non-trivial features of SPARQL
which are not available in the ConceptNet API but which one gets for free by
adopting our approach.
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Q1 The first query illustrates the use of multiple triple patterns and regular-
expression filters:

prefix cnc: <http://conceptnet.io/c/en/>
prefix cnr: <http://conceptnet.io/r/>
select ?x ?y where {

cnc:cat cnr:Desires ?x.
?x cnr:Antonym ?y.
filter(regex(str(?y), "ing$"))

} limit 10

It selects the terms x and y such that “cat” desires x which is an antonym
of y and y ends in “ing”. This query takes about 5s to execute in our experi-
mental setup using the simplified Comunica endpoint and produces results like
“(eat, drinking)”, “(sleep,working)”, etc.

Q2 The second query illustrates the use of property paths:

select ?x ?y where {
cnc:chair (cnr:MadeOf/cnr:UsedFor) ?x.
?x cnr:IsA* ?y.

} limit 10

It selects the terms x and y such that “chair” is made of something which is
used for x which itself is a type of y. This query takes about 20s to run us-
ing the simplified Comunica interface and includes among its results the tuple
“(burning, chemical_reaction)”.

Q3 The third and last query illustrates the use of federation:

prefix wd: <http://www.wikidata.org/entity/>
prefix wdt: <http://www.wikidata.org/prop/direct/>
select ?x where {

cnc:police cnr:ExternalURL ?x.
service <http://query.wikidata.org/sparql> {

?x wdt:P31 wd:Q5741069.
}

} limit 10

This query selects the entities x in Wikidata such that x is listed as an ex-
ternal reference associated to the term “police” in ConceptNet and, according
to Wikidata, is an instance of “rock group” (wd:Q5741069). The answer in this
case is the Wikidata entity “The Police” (wd:Q178095). It takes about 10s to
run this query using our simplified Comunica interface. Note that to evaluate it
Comunica needs to query the public SPARQL endpoint of Wikidata.
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5 Related Work

An early attempt to reconcile ConceptNet and the Semantic Web is [7]. In it
the authors discuss the feasibility of an RDF encoding of ConceptNet (then
version 3.0) and present a conceptual model of its core relations using OWL
(the Web Ontology Language). No implementation or experimental evaluation
is provided.

A more recent proposal for converting ConceptNet to RDF is [13]. It is an
expansion of ConceptOnto [12], an upper ontology based on ConceptNet. In [13],
the authors present an algorithm for extracting edges from ConceptNet 5 data
dumps and for converting these edges to RDF. They also discuss use cases involv-
ing SPARQL queries, but these are assumed to run over the RDF files resulting
from the offline conversion of the data dumps.

Yet another proposal for converting ConceptNet to RDF is [3]. In it the
authors present a concise conversion model which attempts simplify the encoding
proposed in [13]. They also discuss use cases and present illustrative SPARQL
queries which, again, are assumed to be evaluated against the RDF files resulting
from the offline conversion of ConceptNet’s data dumps.

All of the above proposals have in common the fact that they operate over
static data dumps of ConceptNet. The RDF files they produce quickly become
obsolete and any attempt to use these files for live queries would require solving
the same kind of problems which are already solved by the official ConceptNet
API. To the best of our knowledge, our proposal is the first to expose a live RDF
interface to ConceptNet which is built on top of the official interface and which
supports SPARQL.

6 Conclusion

In this paper, we presented an approach for enabling live SPARQL queries over
ConceptNet. Our approach is based on Linked Data Fragments and consists in
building a TPF interface on top of the ConceptNet API. As we discussed, this
requires only minimal changes to ConceptNet, and with such an interface in place
one can then use TPF-compatible engines to evaluate SPARQL queries directly
over the ConceptNet server. The experiments we did showed that the overhead
incurred is small and can be further reduced by changing the way edges are
represented internally by ConceptNet. Also, as discussed in Section 4, there are
further opportunities for improvement if one takes into account the peculiarities
of the SPARQL engine used.

In future work, we intend to investigate the possibility of making Comunica
talk directly to the ConceptNet API, instead of having to go through a TPF in-
terface. This could be done using a Comunica plugin developed for this purpose.
Comunica adopts a plugin-based architecture and comes with built-in plugins for
reading triples from standard sources like a TPF server. We could develop a cus-
tom input plugin that reads triples directly from a given ConceptNet endpoint
(using the ConceptNet API) eliminating thus the need of the TPF layer.
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