
Investigating Ontology-based data access with
GitHub

Yahlieel Jafta1,3[0000−0002−8307−5635], Louise Leenen1,3[0000−0002−9212−550X],
and Thomas Meyer2,3[0000−0003−2204−6969]

1 University of the Western Cape, Cape Town, South Africa
2858132@myuwc.ac.za,lleenen@uwc.ac.za

2 University of Cape Town, Cape Town, South Africa
tmeyer@cair.org.za

3 Centre for Artificial Intelligence Research (CAIR), South Africa

Abstract. Data analysis-based decision-making is performed daily by
domain experts. As data grows, getting access to relevant data becomes a
challenge. In an approach known as Ontology-based data access (OBDA),
ontologies are advocated as a suitable formal tool to address complex
data access. This technique combines a domain ontology with a data
source by using a declarative mapping specification to enable data ac-
cess using a domain vocabulary. We investigate this approach by study-
ing the theoretical background; conducting a literature review on the
implementation of OBDA in production systems; implementing OBDA
on a relational dataset using an OBDA tool and; providing results and
analysis of query answering. We selected Ontop (https://ontop-vkg.org)
to illustrate how this technique enhances the data usage of the GitHub
community. Ontop is an open-source OBDA tool applied in the domain
of relational databases. The implementation consists of the GHTorrent
dataset and an extended SemanGit ontology. We perform a set of queries
to highlight a subset of the features of this data access approach. The
results look positive and can assist various use cases related to GitHub
data with a semantic approach. OBDA does provide benefits in practice,
such as querying in domain vocabulary and making use of reasoning over
the axioms in the ontology. However, the practical impediments we ob-
serve are in the “manual” development of a domain ontology and the
creation of a mapping specification which requires deep knowledge of
a domain and the data. Also, implementing OBDA within the practi-
cal context of an information system requires careful consideration for
a suitable user interface to facilitate the query construction from ontol-
ogy vocabulary. Finally, we conclude with a summary of the paper and
direction for future research.

Keywords: Ontology-based data access · ontology · data access · rela-
tional databases · Git · GitHub.

1 Introduction

Information retrieval is a critical process in organizations for extracting insights
to achieve strategic organizational objectives. Large enterprises today use sev-

https://ontop-vkg.org


2 Y. Jafta et al.

eral information systems each with its database to store input and functional
data [14]. In various domains, clients require access to domain-specific services
exported by systems [6]. However, gaining access to the required data in a het-
erogeneous environment is becoming a challenge due to data access generally
being performed by technical experts who translate the requirements of domain
experts into the necessary analytical output, creating a bottleneck at scale [17].

The two main ways to handle access to heterogeneous data are procedural
and declarative [21]. A procedural methodology is a bottom-up approach where
the problem is addressed at the data source level. However, this approach is
expensive to maintain and requires updates for each change in the underlying
data structure. The declarative approach, a top-down approach, defines a shared
conceptualization that is valid for the domain of interest underlying the data
sources. This conceptualization is constructed from the intentional level of the
application domain terms, which is then linked to the actual data. These terms
are then specified to access information [6]. The focus of this paper is based
on the declarative approach. To realize such a solution an approach known as
Ontology-based data access (OBDA) is advocated for, a technique that utilizes
formalized domain knowledge (ontologies) as a suitable formal tool for data
access [28]. In the literature, this formalism of domain knowledge is advocated
for and applied in the space of problems around data integration and developing
intelligent search systems [14]. The focus of this paper is on the latter, however,
the literature considers this as a unified problem [14].

This paper applies Ontop, an open-source system that links relational databases
with domain ontologies. Ontop transforms the relational database into a virtual
Resource Description Framework (RDF) graph [4] that can be queried using
SPARQL. This approach offers a powerful way to leverage existing databases
for semantic web applications. Our implementation utilizes a GitHub relational
dataset from the GHTorrent [11] project. Furthermore, there exists an RDF-
linked dataset for GHTorrent called the Semantic Git (SemanGit) [19]. The Se-
manGit dataset was systematically built by transforming the GHTorrent dataset
into linked data, and the SemanGit ontology was subsequently developed.

In this paper, the Ontop OBDA tool is used to illustrate how OBDA enhances
the data usage of the GitHub community; Ontop is applied to the GHTorrent
dataset and the SemanGit ontology. Section 2 provides the background on OBDA
and Section 3 discusses related work. Section 4 discusses the Ontop system,
the GHTorrent dataset, and the SemanGit ontology (including extensions to
the ontology). Section 5 shows the implementation of Ontop on the selected
dataset and ontology. Section 6 illustrates query answering with Ontop followed
by a discussion in Section 7. Finally, we conclude in Section 8 with future work
emanating from this research.

2 Ontology-based data access

In the last decade, the database research community created the foundation for
the utilization of columnar storage [1], allowing for efficient storage and pro-



Investigating Ontology-based data access with GitHub 3

cessing of large data sets. As a result, relational database management systems
(RDMS) have seen considerable growth, especially the wide adoption of database
systems offered as cloud services [1]. Ontologies [13] express a shared conceptual-
ization of the domain of interest at a high level of abstraction independent from
the data sources. While ontologies are a good candidate for realizing this con-
ceptualization, RDMS are natural candidates for the management of the data
layer given the maturity of RDMS.

The Virtual Knowledge Graph (VKG) approach, also referred to in the liter-
ature as OBDA, is a well-known view for accessing and integrating data sources
[34]. In this approach, the data sources are virtualized through mapping and an
ontology, which is presented as a unified knowledge graph that can be queried by
end-users using domain vocabulary [34]. When data is queried, the user query is
translated over the ontology into SQL queries over the database. The mapping
specification layer is responsible for binding the ontology and the data sources.
This is achieved by linking the classes and properties in the ontology to SQL
views over the data in the database. The ontology in combination with the map-
pings produces a VKG, which can be queried using SPARQL, the standard query
language in the Semantic Web [4]. OBDA systems utilize the mapping specifi-
cation and Description Logic [2] reasoning to automatically transform queries
expressed in terms of the ontology into SQL queries that can be executed on the
database.

The OBDA framework consists of an extensional instance, the data source,
an intensional schema which is the ontology [32], and the link between the two
consisting of a mapping specification.

Definition 1. Formally, the extensional instance is represented as the data
source D conforming to the data source schema S. The intensional schema is
defined as the OBDA specification P = (O, M, S) [32] where,

– O is an ontology
– M a mapping from S to O
– S the data source schema

An OBDA specification P is instantiated by a database D compliant with the
schema S. The pair (P, D) is referred to as an OBDA instance, or an instance
of a VKG. The RDF graph, denoted M(D), is the set of triples produced by
combining M and D. Thus, the exposed virtual RDF graph, denoted GP,D,
provides the semantics of an OBDA instance (P, D) and comprises the triples
derived from the triples in M(D) by applying the axioms in O [33].

The most fundamental reasoning task in the OBDA approach is query an-
swering over the KG [32]. Query answering is performed by utilizing SPARQL
as a query language. A SPARQL query q over the OBDA instance (P, D) es-
sentially returns the answer to q over the KG GP,D, inline with the standard
SPARQL semantics [33]. The primary method for query answering in this ap-
proach is query reformulation, which prevents physical materialization of the KG
GP,D. The SPARQL query q expressed over the KG is reformulated into a SQL



4 Y. Jafta et al.

query Q that can be directly executed on D [33]. During the query reformula-
tion process, the SPARQL query q is processed through a set of transformations,
which include rewriting the query q for the ontology O and unfolding it inline
with the mapping M. The answers returned by the SQL query Q, after execu-
tion on D, are returned and transformed into RDF terms based on the mapping
M. The mapping M connecting the ontology O to the database is responsible
for specifying how the ontology assertions are populated by the data from the
source D.

3 Related Work

Applications of knowledge graphs are gradually gaining momentum due to their
agility and flexibility to apply to various data models [8]. This flexibility enables
their application to the integration of heterogeneous sources and schema of data.
There has been a lot of attention on converting legacy data to RDF knowledge
graphs. Given the wide impact and implementations of relational databases,
naturally, the focus shifted in this direction. The two main approaches for this
integration were to materialize all data within a given data source as RDF triples
or on-the-fly data access using a query language such as SPARQL and to delegate
the actual retrieval of the data to the data source engine [26]. Once the data is
exposed as VKGs, data can be processed using familiar vocabularies in the form
of specific domain ontologies with automated reasoning capabilities.

Using Ontop, Massari et al. [26] apply OBDA to enable data integration
of non-relational (NoSQL) data sources with the motivation to fill the gap be-
tween NoSQL and the Semantic web. They used Couchbase, a NoSQL document-
oriented database with the following components defining the implementation;
an OWL Ontology, an Access Interface, mappings, a NoSQL database, a SPARQL
to NoSQL query adjustment, and a JSON export [26].

Siemens Energy used OBDA to address data access challenges on large-scale
data [17]. The main motivation was the bottleneck for diagnostics in data gath-
ering, which takes up to 80% of the overall time. Finding the right data for
analytics is very hard due to the constraints of predefined queries, the complex-
ity of data, the intricacy of query construction, and the limitation of explicitly
stated information. Three ontologies, defining the turbine, sensor, and diagnostic
data models, based on the Siemens database schemata were developed.

Geologists at the data-intensive petroleum company Statoil frequently use
data stored in multiple data sources [16]. Due to the complexities of the data
schemata, geologists often require IT personnel for data access support. For
example, one of the data stores contains about 3000 tables with about 37000
columns. Given this large data model, query formulation by Statoil geologists is
not feasible without the help of IT specialists [16]. OBDA was thus applied to
address the data access challenge. Their approach includes an ontology that is
connected to the data sources via mappings and query translation between user
queries and underlying data sources. The Optique–platform [18] was used.



Investigating Ontology-based data access with GitHub 5

4 OBDA Tool, Dataset, and Ontology

4.1 Ontop system

In both academia and industry, more than a dozen VKG query answering sys-
tems have been developed [33]. To select a suitable query-answering system for
our implementation we looked at systems that are open-source with the abil-
ity to perform ontological reasoning. Xiao et al. [33] reported on the most im-
portant query-answering systems that are compliant with industrial standards
and in terms of query performance. The report includes systems that are both
open-source and proprietary, irrespective of ontological reasoning capacity. The
systems include D2RQ4, Mastro [5], Morph [29], Ontop [4], Oracle Spatial and
Graph5, Stardog6 and Ultrawrap [30]. From this list of query answering sys-
tems, D2RQ, Morph, and Ontop are open-source, however, both D2RQ and
Morph projects do not support ontology inference and have not actively been
maintained since January 2015 and June 2022 respectively. Given this, we opted
for the Ontop system as the tool of choice.

Ontop has undergone four major releases since its inception in 2009, estab-
lishing it as the most mature and state-of-the-art OBDA open-source system
[34]. Ontop support the World Wide Web Consortium (W3C) recommendations
for SPARQL and the W3C RDB2RDF Mapping Language (R2RML) mappings.
During query formulation, Ontop uses “a relational-algebra-type representation”
[34] for queries in the intermediate query (IQ) language. Ontop has independent
support for each RDMS vendor to produce the desired SQL results. The IQ is
converted into the relevant SQL based on the applicable RDMS vendor SQL
dialect. For further detail on Ontop, we direct the interested reader to the work
of Xiao et al. [34].

4.2 The GHTorrent Dataset

The acquisition and curation of data from software repositories is a typical re-
quirement to support empirical studies on software engineering [11], and GitHub
is an attractive source for this as it provides access to its internal public data
via a REST API [12]. However, access to the REST API is capped at a request
limitation of 15,000 requests per hour per authentication token. Given this lim-
itation, it is quite a cumbersome procedure to extract large amounts of data
to support research depending on this data. As of February 2023, GitHub has
over one hundred million developers across more than four million organizations
contributing to more than three-hundred and thirty million repositories1, mak-
ing it a substantial source for software repository data. To address the need for
making this data available, the GHTorrent project was established. GHTorrent
is an offline mirror of GitHub’s event streams and persistent data that is made
available to the research community as a service.
4 http://d2rq.org/
5 https://www.oracle.com/database/technologies/spatialandgraph.html
6 https://www.stardog.com/
1 https://github.com/about



6 Y. Jafta et al.

4.3 SemanGit Ontology

Utilizing an ontology that applies to the domain of the underlying data source
is an essential step in OBDA. The GHTorrent dataset falls within the domain
of the git version control system (VCS). A VCS keeps track of changes made
to a file or set of files over time. Selected files can be restored to their previous
state using this feature, promoting easy recovery of files and errors [9]. As part
of the investigative procedure to identify the dataset, we had to keep in mind the
ontology that will be used. For this, we had the option of developing or re-using
an existing ontology for the domain of interest. While investigating a suitable
dataset for the research, we found a novel RDF dataset based on the GHTor-
rent called SemanGit. Based on a git ontology, SemanGit is the first collection
of linked data extracted from GitHub [19]. The SemanGit ontology7 has been
identified as a suitable ontology for this research as it was developed and used as
the underlying ontology for the RDF-linked dataset created from the GHTorrent
dataset [19]. In OBDA, the ontology is used directly over the data source via a
mapping specification and keeps the data in its original state. In our work, the
SemanGit ontology describes the concepts and relationships in the git domain,
while the mapping specification provides a formal mapping between the ontology
and the GHTorrent MySQL relational database schema. This enables queries to
be expressed in terms of concepts from the ontology using SPARQL. At query
time, a SPARQL query is first parsed and analyzed to identify the relevant con-
cepts and relationships from the ontology. Next, the mapping specification is
used to translate these ontology concepts and relationships into the correspond-
ing SQL query (tables, columns, and joins) in the underlying relational database
schema. Additionally, OBDA can integrate several data sources and should thus
not be viewed as a specific data source.

The ontology differentiates between git conventions and provider-specific fea-
tures. For example, based on git, the author of a commit is represented by a
“Name [email]” pair whereas GitHub represents a “commit author” as a user
containing additional attributes such as location, country code, creation date
[19]. To accommodate this, the ontology was built in a hierarchical structure
with the git protocol features forming the base classes, and provider-specific ex-
tensions being classes (denoted with the “github_” prefix) that inherit from the
base classes.

We consider the ontology to be a base ontology with Primitive classes and
no Defined classes. Classes with at least one set of necessary and sufficient
requirements are known as defined classes; they have a definition, and every
individual who meets the definition belongs to the class. Primitive classes are
those that lack any sets of necessary and sufficient requirements [15].

In the SemanGit ontology, github_pull_request is a subclass of
pull_request which says that if something is a github_pull_request it is
necessarily a pull_request . According to GitHub’s REST API, every pull re-
quest is an issue , but not all issues are considered pull requests. Given the

7 https://github.com/SemanGit/SemanGit



Investigating Ontology-based data access with GitHub 7

ontology description, if we consider an instance of a pull_request , the knowl-
edge captured is not sufficient to determine that the pull request instance is a
member of the class github_pull_request and that it is an issue . We must
alter the conditions to make this possible, by extending the necessary conditions
to necessary AND sufficient conditions. This means that the requirements for
being a member of the class github_pull_request are not only necessary but
also sufficient to establish that any given instance that satisfies the conditions
must be a member of the class github_pull_request . Thus, the classes in
the SemanGit ontology are considered to be primitive. The ontology also lacks
inverse relations and object property characteristics which make it possible to
enrich the meaning of properties [15]. We now outline the extensions made to
the ontology. The approach used for extending the SemanGit ontology is based
on the methodology defined by Noy et al. [27]. It is an iterative development
process that repeats continuously to enhance the ontology. For our purpose, we
renamed the classes and properties by removing the underscores and using Up-
perCamelCase for class names and lowerCamelCase for property names. We also
focused on enriching existing class and property definitions. Since we are reusing
an existing ontology, the domain (git protocols) and scope (GitHub) of the on-
tology is known with the key concepts being defined. Considering this, we are
only focusing on the sub-processes related to the extension of class and property
definitions. The instances are defined in the underlying database instance. The
class extensions applied were minimal. We have converted the class descriptions
of GithubProject and GithubPullRequest to definitions.

– If something is an instance of a GithubProject then it is necessary that it
is a Repository and it is also necessary that it has exactly 1 owner that is
a member of the class User .
• GithubProject ⊑ Repository ⊓ ∃hasowner.User⊓
(= 1githubHasOwner.User)

– If something is an instance of a GithubPullRequest then it is necessary
that it is a PullRequest and it is also necessary that it has exactly 1 issue
that is a member of the class GithubIssue .
• GithubPullRequest ⊑ (PullRequest ⊓GithubIssue)⊓
∃githubPullRequestIssue.GithubIssue⊓
(= 1githubPullRequestIssue.GithubIssue)

– Furthermore, the User and Repository classes are disjoint from each other.
• User ⊑ ¬Repository

The following inverse properties were added.

– githubOwnerOf inverse of githubHasOwner
– hasAuthoredComment inverse of commentAuthor
– hasAuthoredCommit inverse of commitAuthor
– hasCommittedCommit inverse of commitedBy
– repositoryHasCommit inverse of belongsToRepository

In addition to this, each property was analyzed and updated with a char-
acteristic where applicable. We show a visualization of the ontology in figure
1.



8 Y. Jafta et al.

Fig. 1. Ontology visualisation using WebVOWL [24]



Investigating Ontology-based data access with GitHub 9

5 Mapping GHTorrent to the SemanGit Ontology

To create and manage the mapping assertions for the ontology and database
we use the open-source Protégé ontology editor8 along with the Ontop plugin
to enable the management of mappings and querying from within the Protégé
editor. We used version 5.5.0 of Protégé and version 4.1.1 of the Ontop plugin.
A mapping assertion consists of three components; a unique mapping identifier,
a target, and a source. The target is a set of RDF triple patterns defined in the
Terse RDF Triple Language (Turtle)9 syntax that captures the data returned by
the source, which is a regular SQL query. Figures 2 and 3 shows an example of
mapping assertions for the user and commit entity respectively.

Fig. 2. Mapping assertions for the User entity

Fig. 3. Mapping assertions for the Commit entity

These assertions construct a part of the knowledge graph (KG) as defined
in the target part, by populating the RDF triple pattern answer variables with
the corresponding answer in the result set of the source SQL query. The answer
variables are enclosed in braces “{” and “}”. The “UserMap” mapping assertion
populates the ontology User class with the relevant properties to the underlying
8 https://protege.stanford.edu/
9 https://www.w3.org/TeamSubmission/turtle/



10 Y. Jafta et al.

database instance data. We note that the “UserMap” mapping assertion defines
what an organization is considered to be, where an organization according to
the dataset is a user database entry with the “type” column populated with
the value “ORG”. This mapping assertion allows the KG to assert whether a
user is an organization based on the boolean value of the githubUserIsOrg prop-
erty that is populated by the computed MySQL column “is_organization”. The
“CommitMap” mapping assertion populates the ontology Commit class.

6 Querying GHTorrent with SPARQL

To investigate the value of OBDA we performed query answering over the VKG
using a select set of queries based on a user not being informed of specific data
encoding schemes and schema structure of the data source. The query experi-
ments were run on a computer with an AMD Ryzen 9 5900X 12-Core Processor
running at 3.70 MHz using 32GB of RAM, running Windows 10 Pro version
21H2. The MySQL database instance was installed on a Gigabyte GP-AG42TB
AORUS 2TB M.2 2280 PCI-E 4.0 Solid State Drive with MySQL server version
8.0.

SELECT *
WHERE {

?organization a :User.
?organization :githubUserCountryCode true.
?organization :githubUserIsOrg "za".

}

Listing 1.1. Select GitHub organizations with country code “za”

SELECT v1.‘id ‘ AS ‘id1m33 ‘
FROM ‘users ‘ v1
WHERE (’ORG’ = v1.‘type ‘ AND ’za’ = v1.‘country_code ‘)

Listing 1.2. Generated SQL for listing 1.1

The query in listing 1.1 selects the GitHub organizations from South Africa
(country code “za”). GitHub identifies organizations and users as a User en-
tity with a type column to distinguish whether an entity is an organization
or a standard user. To model this in the ontology, a data property named
“githubUserIsOrg” is defined with the domain “githubUser” and range the “boolean”
datatype. In figure 2 we show how this property is mapped to the database. List-
ing 1.2 shows the SQL query translated from the SPARQL query. Here we observe
the inclusion of the generated ’ORG’ = v1.‘type‘ WHERE clause which is a
result of the “UserMap” mapping specification in figure 2. With this query, we
attempt to illustrate that a user does not need to know how the database encodes
an “Organization”. If the data encoding scheme changes in the database, it will
require an update of the mapping assertion which will not affect the SPARQL
query if there is no change in the ontology. Here we observe, selecting the orga-
nization subset by using the “githubUserIsOrg” property in the SPARQL clause



Investigating Ontology-based data access with GitHub 11

(where githubUserIsOrg is true), unfolds in the ’ORG’ = v1.‘type‘ SQL clause
after query translation.

SELECT ?repo_name ?year (COUNT(? commit) AS ?commits)
WHERE
{

?commit :belongsToRepository ?project .
?project :githubProjectName ?repo_name .
?commit :commitCreatedAt ?date .
FILTER (? project IN (repo :3905191 , repo :12159636))

}
GROUP BY ?repo_name (year(?date) AS ?year)

Listing 1.3. Number of commits per year for Angular and React repositories

SELECT v7.‘name1m32 ‘ AS ‘name1m32 ‘, v7.‘v2‘ AS ‘v2 ‘,
COUNT (*) AS ‘v4‘
FROM (SELECT v5.‘name1m32 ‘ AS ‘name1m32 ‘,
EXTRACT(YEAR FROM v5.‘created_at1m43 ‘) AS ‘v2‘
FROM (SELECT DISTINCT v1.‘commit_id ‘ AS ‘commit_id1m4 ‘,
v3.‘created_at ‘ AS ‘created_at1m43 ‘, v2.‘name ‘ AS ‘name1m32 ‘,
v1.‘project_id ‘ AS ‘project_id1m4 ‘
FROM ‘project_commits ‘ v1, ‘projects ‘ v2, ‘commits ‘ v3
WHERE (

(v1.‘project_id ‘ = 3905191 OR v1.‘project_id ‘ = 12159636)
AND v1.‘project_id ‘ = v2.‘id‘
AND v1.‘commit_id ‘ = v3.‘id‘
)

) v5
) v7
GROUP BY v7.‘v2‘, v7.‘name1m32 ‘

Listing 1.4. Generated SQL for listing 1.3

In listing 1.3 we retrieve the number of commits per year for the repositories
Angular and React. Angular and React are two popular GitHub repositories.
Angular, developed at Google, is a web application development framework that
uses Typescript/JavaScript and other languages to create mobile and desktop
web applications. React, a JavaScript library for building user interfaces was de-
veloped at Meta (formerly known as Facebook). With this example, we illustrate
query translation which includes an aggregate function with the commit table
and a subset of the columns. We group the results by repository and year to see
how the number of commits changed over time. The translated MySQL query
can be seen in listing 1.4.

SELECT ?author (COUNT(DISTINCT ?commit) as ?commits)
(COUNT(DISTINCT ?pr) AS ?prs)
WHERE {

BIND (repo :12159636 AS ?repo)
?repo :repositoryHasCommit ?commit .
?author :hasAuthoredCommit ?commit .



12 Y. Jafta et al.

?pr :pullRequestBaseProject ?repo .
?pr :pullRequestUser ?author .

}
GROUP BY ?author

Listing 1.5. Angular repository contributor commits and pull requests

SELECT v6.‘author_id1m7 ‘ AS ‘author_id1m7 ‘,
COUNT(DISTINCT(v6.‘id1m28 ‘)) AS ‘v3‘,
COUNT(DISTINCT(v6.‘commit_id1m5 ‘)) AS ‘v4 ‘
FROM (SELECT DISTINCT v2.‘author_id ‘ AS ‘author_id1m7 ‘,
v1.‘commit_id ‘ AS ‘commit_id1m5 ‘, v3.‘id‘ AS ‘id1m28 ‘
FROM ‘project_commits ‘ v1, ‘commits ‘ v2,
‘pull_requests ‘ v3 , ‘pull_request_history ‘ v4
WHERE (

v1.‘commit_id ‘ = v2.‘id‘
AND v3.‘id‘ = v4.‘pull_request_id ‘
AND v2.‘author_id ‘ = v4.‘actor_id ‘
AND 12159636 = v1.‘project_id ‘
AND 12159636 = v3.‘base_repo_id ‘
)

) v6
GROUP BY v6.‘author_id1m7 ‘

Listing 1.6. Generated SQL for listing 1.5

The query above, listing 1.5 retrieves all the contributors with their total number
of commits and pull requests. A Pull Request (PR) is a request to merge code
changes made on a separate branch of the central repository into the base branch.
The database table “pull_request_history” stores all the actions associated with
a PR, including the user and type of action. We expect to receive results for this
query by reasoning over the axioms in the ontology that declare inverse prop-
erties, even if we did not include any explicit mapping assertions for the object
properties repositoryHasCommit and hasAuthoredCommit. We use the axioms
that repositoryHasCommit is the inverse property of belongsToRepository and
hasAuthoredCommit is the inverse property of commitAuthor in this scenario.

SELECT DISTINCT ?member
WHERE {

VALUES ?project { repo :27601818 }
?member :githubUserFake false .
?pr :pullRequestBaseProject ?project .
?pr :githubPullRequestMerged true .
?pr :pullRequestUser ?member .

}

Listing 1.7. Core team members of Vue js project based on Pull Request contributions

SELECT DISTINCT v1.‘id‘ AS ‘id1m51 ‘ FROM ‘users ‘ v1,
‘pull_requests ‘ v2 , ‘pull_request_history ‘ v3,
‘pull_request_history ‘ v4



Investigating Ontology-based data access with GitHub 13

WHERE (
(v1.‘fake ‘ = 0) AND v2.‘id‘ = v3.‘pull_request_id ‘
AND v2.‘id‘ = v4.‘pull_request_id ‘
AND v1.‘id‘ = v4.‘actor_id ‘
AND 27601818 = v2.‘base_repo_id ‘
AND ’merged ’ = v3.‘action ‘

)

Listing 1.8. Generated SQL for listing 1.7

Listing 1.7 retrieves authentic users contributing to the popular GitHub
repository Vue10 based on merges of a Pull Request (PR). Authentic users
can own repositories and perform actions such as managing issues, pull re-
quests, and commits. Unauthentic users only show up as commit authors or
committers. The fake column is used to identify these types of users in the
user table. We observe in the translated SQL query, listing 1.8, the lookup into
the “pull_request_history” table without explicitly defining it in the SPARQL
query (listing 1.7). This is a result of the mapping specification for the object
property githubPullRequestMerged, which is populated based on the “merged”
action related to a pull request that is stored in the “pull_request_history” ta-
ble. We do note that the generated SQL query contains two self-joins on the
“pull_request_history” table. The Ontop system uses unique constraints (pri-
mary key) for removing self-joins. In the mapping, we are referencing a non-
unique constraint column (pull_request_id) for the pull_request_history ta-
ble. As a test, we observed that when using the primary key in the mapping the
self-join was removed.

We repeated each query ten times and took the mean average of the execution
time. We compared the execution from within the Protégé SPARQL query editor
against running the generated SQL directly in the MySQL Command-line client.
We did not notice a major difference in the execution times. Each query was
executed against the entire database by selecting “all results” in the Protégé
SPARQL query editor. We show the SPARQL query execution time in table 1.

Table 1. Query execution times

Query Time (s)
Listing 1.1 9.515
Listing 1.3 0.6877
Listing 1.5 680.8
Listing 1.7 0.2202

10 https://github.com/vuejs/vue



14 Y. Jafta et al.

7 Discussion

We performed a set of queries to highlight a subset of the features of the OBDA
approach. During the execution of the experiments, the feature of querying in
domain vocabulary without the need to understand the underlying database
data encoding and schema as well as utilizing the ontology axioms during query
executions does stand out. The results look positive and can assist various use
cases related to GitHub data with a semantic approach. The ontology enables a
more precise understanding of the relationships between different data elements,
allowing for intelligent data querying. However, the practical impediments we
observe are in the “manual” development of a domain ontology and the creation
of a mapping specification which affects scalability.

The query volume, the size and complexity of the ontology, and the stabil-
ity and performance of the underlying system all have an impact on scalability.
And while it is possible to scale OBDA systems in a production environment,
in contrast to traditional database systems, it is a complex endeavor that re-
quires deep knowledge to develop and maintain domain ontologies and mapping
specifications that do not suffer semantic loss between the original data and as-
sociated ontologies. The mapping specification connecting the ontology to the
database involves writing individual queries that must be consistent with the
vocabulary of the ontology for each database table and column [4]. And while
the development and maintenance of ontologies is a well-established topic with
considerable research [31], the engineering of mapping specifications is still an
emerging technology. Given this complexity, mapping engineering is a demand-
ing procedure. Several mapping engineering methodologies and tools have been
proposed to address this challenge. Xiao et al. [33] group the contributions into
two categories: mapping bootstrappers and editors. A mapping bootstrapper
attempts to automate a mapping specification for a relational data source. How-
ever, the generated ontology and mappings are data source specific, whereas a
domain ontology aims at being used across multiple data sources within a do-
main. Mapping editors like the ontology editor Protégé provide an environment
for mapping engineering but do not support features such as syntax highlighting
and require deep-level knowledge about the underlying mapping language [33].
We also mention Ontopic Studio11, a more recent no–code mapping editor to link
databases and data lakes with knowledge graphs. For further detail, we direct
the reader to https://ontopic.ai/en/ontopic-studio/.

Traditional relational database systems on the other hand have lower com-
plexity, are scalable, and have defined best practices to achieve good performance
in production given the level of maturity. In comparison to existing large sys-
tems and our experimental observation, OBDA currently falls short in terms of
complexity, cost-effectiveness, and maturity. However, OBDA allows for a more
detailed understanding of the connections that exist between data pieces. Thus
the trade-off between scalability and the reasoning capacity of OBDA needs to
be taken into consideration. Also, we note that actualizing OBDA within the

11 https://ontopic.ai/en/

https://ontopic.ai/en/ontopic-studio/


Investigating Ontology-based data access with GitHub 15

context of an information system requires careful consideration for the imple-
mentation of a suitable user interface to facilitate the SPARQL query construc-
tion from ontology vocabulary, where users of such a system are querying from
a client-facing user interface and not writing SPARQL queries. In this work, we
assumed that a user performing queries is familiar with GitHub terminology and
that the ontology is modeled as close as possible to this domain to enable query
construction from the vocabulary terms. Another approach would be to look at
the field of Natural Language Processing to assist in query formulation, such as
integrating machine learning algorithms and knowledge representation to query
knowledge graphs in natural language. This is however out of the scope of this
research, we refer the interested reader to [10,22].

Given these impediments, the research in this field is very active. Such
as semi-automating ontology development using an approach called Ontology
Learning (OL), where machine learning techniques are applied to represent
knowledge from heterogeneous data sources. Recent work in this area includes
various proposals to apply OL in the scope of relational databases [23,25,20,3].
In the work by Calvanese et al. [7], the authors proposed an algorithm to auto-
matically detect and map a relational schema to ontology mapping patterns.

The artifacts of this research can be found at this link, which includes the
extended ontology and the full set of mapping specifications for each database
table. We highlight that the GHTorrent dataset is not currently up to date,
and the last data dump was released in March 2021. We also note that the
website is not available anymore, however, the content is available on the GitHub
repository. We are not aware of any future updates to the GHTorrent dataset.

8 Conclusion and future work

This paper describes the application of OBDA, specifically the use of the Ontop
tool, on a well-defined open-source dataset called GHTorrent which is based on
the GitHub platform. OBDA involves connecting an ontology to a data source
using a mapping specification. The SemanGit ontology was used as the un-
derlying ontology for this work, which we have extended. We documented the
mapping procedure and demonstrated query answering using SPARQL. OBDA’s
querying in domain vocabulary, combined with reasoning over the ontology’s
axioms, shows promising results. There are opportunities for this work to be
extended and applied for specific use cases applicable to GitHub and OBDA.
This includes publishing the extended ontology and making this work publicly
available to the GitHub community via an interface and API endpoint for fur-
ther evaluation. Maintenance of the extended ontology will be ongoing and can
take several directions depending on the scope of use cases. Furthermore, this
research can facilitate the broader domain of artificial intelligence in the area of
knowledge extraction from heterogeneous data. We thank the reviewers for their
comments and suggestions. The authors used the Protégé editor, supported by
grant GM10331601 from the National Institute of General Medical Sciences of
the US National Institutes of Health.

https://anonymous.4open.science/r/SemanGit-9BF7
http://ghtorrent.org/
https://github.com/ghtorrent/ghtorrent.org
https://github.com/ghtorrent/ghtorrent.org


16 Y. Jafta et al.

References

1. Abadi, D., Ailamaki, A., Andersen, D., Bailis, P., Balazinska, M., Bernstein, P.,
Boncz, P., Chaudhuri, S., Cheung, A., Doan, A., et al.: The seattle report on
database research. ACM SIGMOD Record 48(4), 44–53 (2020). https://doi.org/
10.1145/3385658.3385668

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: Introduction to descrip-
tion logic. Cambridge University Press (2017). https://doi.org/doi.org/10.1017/
9781139025355

3. Ben Mahria, B., Chaker, I., Zahi, A.: A novel approach for learning ontology from
relational database: from the construction to the evaluation. Journal of Big Data
8(1), 25 (2021). https://doi.org/10.1186/s40537-021-00412-2

4. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: Answering SPARQL queries over rela-
tional databases. Semantic Web 8(3), 471–487 (2017). https://doi.org/10.3233/
SW-160217

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-
based data access. Semantic Web 2(1), 43–53 (2011). https://doi.org/10.3233/
SW-2011-0029

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.:
Ontology-based Database Access. In: SEBD. pp. 324–331 (2007)

7. Calvanese, D., Gal, A., Haba, N., Lanti, D., Montali, M., Mosca, A., Shraga, R.:
ADaMaP: Automatic Alignment of Relational Data Sources Using Mapping Pat-
terns. In: International Conference on Advanced Information Systems Engineering.
pp. 193–209. Springer (2021). https://doi.org/10.1007/978-3-030-79382-1_12

8. Calvanese, D., Lanti, D., De Farias, T.M., Mosca, A., Xiao, G.: Accessing scientific
data through knowledge graphs with Ontop. Patterns 2(10), 100346 (2021). https:
//doi.org/10.1016/j.patter.2021.100346

9. Chacon, S., Straub, B.: Pro git. Springer Nature (2014)
10. Chen, Y.H., Lu, E.J.L., Ou, T.A.: Intelligent SPARQL query generation for natural

language processing systems. IEEE Access 9, 158638–158650 (2021). https://doi.
org/10.1109/ACCESS.2021.3130667

11. Gousios, G.: The GHTorrent dataset and tool suite. In: Proceedings of the 10th
Working Conference on Mining Software Repositories. pp. 233–236. MSR ’13, IEEE
Press, Piscataway, NJ, USA (2013). https://doi.org/10.5555/2487085.2487132

12. Gousios, G., Spinellis, D.: GHTorrent: GitHub’s data from a firehose. In: 2012 9th
IEEE Working Conference on Mining Software Repositories (MSR). pp. 12–21.
IEEE (2012). https://doi.org/10.1109/MSR.2012.6224294

13. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl-
edge acquisition 5(2), 199–220 (1993)

14. Gusenkov, A., Bukharaev, N., Birialtsev, E.: On ontology based data integra-
tion: problems and solutions. In: Journal of Physics: Conference Series. vol. 1203,
p. 012059. IOP Publishing (2019). https://doi.org/10.1088/1742-6596/1203/1/
012059

15. Horridge, M., Jupp, S., Moulton, G., Rector, A., Stevens, R., Wroe, C.: A practical
guide to building "owl" ontologies using protégé 4 and co-ode tools edition1. 2. The
university of Manchester 107 (2009)

16. Kharlamov, E., Hovland, D., Skjæveland, M.G., Bilidas, D., Jiménez-Ruiz, E.,
Xiao, G., Soylu, A., Lanti, D., Rezk, M., Zheleznyakov, D., et al.: Ontology based

https://doi.org/10.1145/3385658.3385668
https://doi.org/10.1145/3385658.3385668
https://doi.org/10.1145/3385658.3385668
https://doi.org/10.1145/3385658.3385668
https://doi.org/doi.org/10.1017/9781139025355
https://doi.org/doi.org/10.1017/9781139025355
https://doi.org/doi.org/10.1017/9781139025355
https://doi.org/doi.org/10.1017/9781139025355
https://doi.org/10.1186/s40537-021-00412-2
https://doi.org/10.1186/s40537-021-00412-2
https://doi.org/10.3233/SW-160217
https://doi.org/10.3233/SW-160217
https://doi.org/10.3233/SW-160217
https://doi.org/10.3233/SW-160217
https://doi.org/10.3233/SW-2011-0029
https://doi.org/10.3233/SW-2011-0029
https://doi.org/10.3233/SW-2011-0029
https://doi.org/10.3233/SW-2011-0029
https://doi.org/10.1007/978-3-030-79382-1_12
https://doi.org/10.1007/978-3-030-79382-1_12
https://doi.org/10.1016/j.patter.2021.100346
https://doi.org/10.1016/j.patter.2021.100346
https://doi.org/10.1016/j.patter.2021.100346
https://doi.org/10.1016/j.patter.2021.100346
https://doi.org/10.1109/ACCESS.2021.3130667
https://doi.org/10.1109/ACCESS.2021.3130667
https://doi.org/10.1109/ACCESS.2021.3130667
https://doi.org/10.1109/ACCESS.2021.3130667
https://doi.org/10.5555/2487085.2487132
https://doi.org/10.5555/2487085.2487132
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1088/1742-6596/1203/1/012059
https://doi.org/10.1088/1742-6596/1203/1/012059
https://doi.org/10.1088/1742-6596/1203/1/012059
https://doi.org/10.1088/1742-6596/1203/1/012059


Investigating Ontology-based data access with GitHub 17

data access in Statoil. Journal of Web Semantics 44, 3–36 (2017). https://doi.org/
10.1016/j.websem.2017.05.005

17. Kharlamov, E., Mailis, T., Mehdi, G., Neuenstadt, C., Özçep, Ö., Roshchin, M.,
Solomakhina, N., Soylu, A., Svingos, C., Brandt, S., et al.: Semantic access to
streaming and static data at Siemens. Journal of Web Semantics 44, 54–74 (2017).
https://doi.org/10.1016/j.websem.2017.02.001

18. Kharlamov, E., Pinkel, C., Rezk, M., Skjæveland, M., Soylu, A., Xiao, G.,
Zheleznyakov, D., Giese, M., Horrocks, I., Waaler, A., et al.: Optique: Ontology-
based data access platform (2015)

19. Kubitza, D.O., Böckmann, M., Graux, D.: SemanGit: A linked dataset from git.
In: International Semantic Web Conference. pp. 215–228. Springer (2019). https:
//doi.org/10.1007/978-3-030-30796-7_14

20. Lakzaei, B., Shamsfard, M.: Ontology learning from relational databases. Informa-
tion Sciences 577, 280–297 (2021). https://doi.org/10.1016/j.ins.2021.06.074

21. Lenzerini, M., Daraio, C.: Challenges, Approaches and Solutions in Data Integra-
tion for Research and Innovation, pp. 397–420. Springer International Publishing,
Cham (2019). https://doi.org/10.1007/978-3-030-02511-3_15

22. Liang, S., Stockinger, K., de Farias, T.M., Anisimova, M., Gil, M.: Querying
knowledge graphs in natural language. Journal of big data 8, 1–23 (2021). https:
//doi.org/10.1186/s40537-020-00383-w

23. Liao, C.h., Wu, Y.f., King, G.h.: Research on learning owl ontology from relational
database. In: Journal of Physics: Conference Series. vol. 1176, p. 022031. IOP
Publishing (2019). https://doi.org/10.1088/1742-6596/1176/2/022031

24. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: Web-based visualiza-
tion of ontologies. In: Knowledge Engineering and Knowledge Management: EKAW
2014 Satellite Events, VISUAL, EKM1, and ARCOE-Logic, Linköping, Sweden,
November 24-28, 2014. Revised Selected Papers. 19. pp. 154–158. Springer (2015).
https://doi.org/10.1007/978-3-319-17966-7_21

25. Ma, C., Molnár, B.: Use of ontology learning in information system integration:
a literature survey. In: Intelligent Information and Database Systems: 12th Asian
Conference, ACIIDS 2020, Phuket, Thailand, March 23–26, 2020, Proceedings 12.
pp. 342–353. Springer (2020). https://doi.org/10.1007/978-981-15-3380-8_30

26. Massari, H.E., Mhammedi, S., Gherabi, N., Nasri, M.: Virtual OBDA Mechanism
Ontop for Answering SPARQL Queries Over Couchbase. In: International Con-
ference on Advanced Technologies for Humanity. pp. 193–205. Springer (2021).
https://doi.org/10.1007/978-3-030-94188-8_19

27. Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: A guide to creating
your first ontology (2001)

28. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. In: Journal on data semantics X, pp. 133–173. Springer
(2008). https://doi.org/10.1007/978-3-540-77688-8_5

29. Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-
based SPARQL to SQL query translation using Morph. In: Proceedings of the 23rd
international conference on World wide web. pp. 479–490 (2014). https://doi.org/
10.1145/2566486.2567981

30. Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data.
Journal of Web Semantics 22, 19–39 (2013). https://doi.org/10.1016/j.websem.
2013.08.002

31. Staab, S., Studer, R.: Handbook on ontologies. Springer Science & Business Media
(2010). https://doi.org/10.1007/978-3-540-92673-3

https://doi.org/10.1016/j.websem.2017.05.005
https://doi.org/10.1016/j.websem.2017.05.005
https://doi.org/10.1016/j.websem.2017.05.005
https://doi.org/10.1016/j.websem.2017.05.005
https://doi.org/10.1016/j.websem.2017.02.001
https://doi.org/10.1016/j.websem.2017.02.001
https://doi.org/10.1007/978-3-030-30796-7_14
https://doi.org/10.1007/978-3-030-30796-7_14
https://doi.org/10.1007/978-3-030-30796-7_14
https://doi.org/10.1007/978-3-030-30796-7_14
https://doi.org/10.1016/j.ins.2021.06.074
https://doi.org/10.1016/j.ins.2021.06.074
https://doi.org/10.1007/978-3-030-02511-3_15
https://doi.org/10.1007/978-3-030-02511-3_15
https://doi.org/10.1186/s40537-020-00383-w
https://doi.org/10.1186/s40537-020-00383-w
https://doi.org/10.1186/s40537-020-00383-w
https://doi.org/10.1186/s40537-020-00383-w
https://doi.org/10.1088/1742-6596/1176/2/022031
https://doi.org/10.1088/1742-6596/1176/2/022031
https://doi.org/10.1007/978-3-319-17966-7_21
https://doi.org/10.1007/978-3-319-17966-7_21
https://doi.org/10.1007/978-981-15-3380-8_30
https://doi.org/10.1007/978-981-15-3380-8_30
https://doi.org/10.1007/978-3-030-94188-8_19
https://doi.org/10.1007/978-3-030-94188-8_19
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1145/2566486.2567981
https://doi.org/10.1145/2566486.2567981
https://doi.org/10.1145/2566486.2567981
https://doi.org/10.1145/2566486.2567981
https://doi.org/10.1016/j.websem.2013.08.002
https://doi.org/10.1016/j.websem.2013.08.002
https://doi.org/10.1016/j.websem.2013.08.002
https://doi.org/10.1016/j.websem.2013.08.002
https://doi.org/10.1007/978-3-540-92673-3
https://doi.org/10.1007/978-3-540-92673-3


18 Y. Jafta et al.

32. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Za-
kharyaschev, M.: Ontology-based data access: A survey. International Joint Con-
ferences on Artificial Intelligence (2018). https://doi.org/10.24963/ijcai.2018/777

33. Xiao, G., Ding, L., Cogrel, B., Calvanese, D.: Virtual knowledge graphs: An
overview of systems and use cases. Data Intelligence 1(3), 201–223 (2019). https:
//doi.org/10.1162/dint_a_00011

34. Xiao, G., Lanti, D., Kontchakov, R., Komla-Ebri, S., Güzel-Kalaycı, E., Ding, L.,
Corman, J., Cogrel, B., Calvanese, D., Botoeva, E.: The virtual knowledge graph
system Ontop. In: International Semantic Web Conference. pp. 259–277. Springer
(2020). https://doi.org/10.1007/978-3-030-62466-8_17

https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.1162/dint_a_00011
https://doi.org/10.1162/dint_a_00011
https://doi.org/10.1162/dint_a_00011
https://doi.org/10.1162/dint_a_00011
https://doi.org/10.1007/978-3-030-62466-8_17
https://doi.org/10.1007/978-3-030-62466-8_17

	Investigating Ontology-based data access with GitHub

