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Abstract. More and more knowledge graphs (KGs) are generated in
various domains. Applications using more than one KG require an in-
tegrated view of those KGs, which, in the first place, requires a com-
mon schema or ontology. Merging schemas requires not only equivalence
mappings between classes but also other semantic relations, like sub-
class, superclass, etc. In this paper, we introduce TaSeR, a Transformer
based model for Semantic Relation Typing, which is able to decide which
type of relation holds between two given classes. The approach can dif-
ferentiate between equivalent class, sub-/superclass, part of/has part,
cohyponym, and no relation at all. With the latter outcome, it is not
only possible to refine given class alignments, but also filter incorrect
correspondences. The models are trained based on examples from gen-
eral knowledge graphs as well as fine-tuned on the test case at hand. The
former models can be directly used to predict a relation without further
training. We show that those models are able to outperform other ap-
proaches which solve a similar task. For the evaluation, a new measure
is introduced which credits for proximal matches.

Keywords: Relation Typing · Ontology Matching · Knowledge Graph
Integration · Transformers

1 Introduction

Data integration comprises different tasks, such as schema matching, entity
matching, and data fusion. In most approaches, schema or ontology matching
is carried out as a first step, trying to find correspondences between schema
elements of different knowledge graphs (KGs).

Most existing ontology matching tools only identify equivalent classes in two
schemas. This restriction, however, is very limiting when it comes to existing
integration problems. For example, if one schema defines a class Person (with-
out any subclasses), and another one defines a class Artist (without any su-
perclasses), such tools can either not find any correspondence between the two
classes, or erroneously identify them as equivalent.

Since both solutions – not finding a correspondence at all, or erroneously
identifying equivalence – are suboptimal, we argue that schema matching tools
should output a wider range of relations between classes in schemas.
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Fig. 1. Example of a matching task with semantic relations. All intra-KG relations
represent rdfs:subClassOf.

In this work, we present TaSeR, a Transformer based model for Semantic
Relation Typing. The input is a correspondence between two classes where the
relation type is not yet determined. The task is to find out which type of relation
actually holds between those inputs. We show that transformer based models can
outperform state of the art approaches by fine-tuning them on general knowledge
graphs such as DBpedia or Wikidata. The input KGs are further used to create
a test case-specific model which often increases the performance.

Such models can be used to integrate ontologies of multiple KGs such as in the
case of DBkWik [12]. Thousands of KGs are generated from Wikis by applying
the DBpedia extraction framework. The result is a set of isolated KGs. When
integrating their schemas, different relations can hold between their classes, not
only equivalence.

Our contributions are: (1) a transformer based model for semantic relation
prediction, (2) an existing dataset transformed to a new track at the OAEI, and
(3) an improved evaluation measure for this task.

The paper is structured as follows: In the next section, we first define the
task and present the relations our approach is able to predict. Afterwards related
work is discussed. The following approach section is divided into training data
generation, model tuning, and tuning on test cases. We evaluate the models on
a gold standard in section 5 and conclude with an outlook on future work.

2 Task Definition

Figure 1 shows an example of the task. Given two input KGs KG1 and KG2, the
task is to find correspondences between them that are enriched with semantic
relations. Thus only inter-KG relations are of interest in this work. Nevertheless,
it is possible to use intra-KG relation as an additional training signal which is
later discussed and evaluated.



Transformer based Semantic Relation Typing 3

Table 1. Mapping of linguistic relations to correspondence types.

Relation DL RDF representation Correspondence example
Synonym A ≡ B owl:equivalentClass equivalence home <->domicile
Hyponym A ⊑ B rdfs:subClassOf subsumed apple ->fruit
Hypernym A ⊒ B rdfs:subClassOf−1 subsume fruit->apple
Meronym - dcterms:isPartOf part of knee ->leg
Holonym - dcterms:hasPart has a / has part leg ->knee
Cohyponym - skos:related cohyponym dalmatian <->poodle

The input is an alignment A consisting of correspondences defined as a 4-tuple
< x, y, r, c > where x and y are entities of KGs one and two, r represents the
relation which holds between the entities (e.g., = or ⊑), and finally a confidence
value c ∈ [0, 1]. The output is an alignment A′ with the same pairs (x, y), but
potentially different relations and confidence scores.

In the example knowledge graph on the right, there is no equivalent class
to novels. But many inter-KG correspondences can still be created e.g. novel is
a subclass of book. Thus it is important to not only use equivalence relations
between classes for integrating knowledge graphs.

The following semantic relations can be used between KGs: equivalence, sub-
/super class of, part of/has part, cohyponym, and no relation at all (to filter
correspondences). We now discuss how the relations should be used, their se-
mantics, and how they relate to each other. Given the fact that class A is a
subclass of class B means that all instances of A are also instances of class B (by
RDFS semantics). Thus A is the more specific class whereas B is the more gen-
eral class. The inverse relation is called superclass of. Whenever A is a subclass
of B then B is always a superclass of A. The part of relation which represents
a composition of concepts is often miss-used with the subclass relation 1. As an
example, a leg is a part of the body and not a subclass because each instance of
a leg is not an instance of type body. The inverse relation is called has part or
has a. Based on the definition of [1], the cohyponym relation consists of a pair
of concepts that are both direct subclasses of a common superclass (e.g. A and
C are related iff A is a subclass of B and C is a subclass of B).

3 Related Work

The first area of related work is knowledge graph completion [23]. The main
task is to find links between entities that are true, but not explicitly stated in
a KG. Technically, the systems are required to retrieve a ranked list of entities
that are most likely for a given source entity and a relation - essentially object
entity prediction. In a similar way, the subject entity should be predicted for a
given target entity and relation. Some approaches also use the task of predicting
the relation given both source and target entities as an additional training task.

1 https://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/
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The approaches can be further divided into embedding-based approaches such as
RESCAL [22], TransE [3], and ComplEx [29] as well as rule-based systems such
as AnyBURL [18] and AMIE [7]. The main difference is that those approaches do
only predict relations that are seen during training. This means that any relation
which appears in the given KGs might be a candidate for the prediction. But in
the presented use case the target relation is restricted to class relations.

The next field of related is the natural language processing (NLP) commu-
nity. Given resources such as Wordnet [20] the relations between synsets can also
be seen as semantic relations between classes in KGs. Table 1 shows the con-
nection between linguistic relations used in Wordnet and relation types used in
correspondences. [8] shows for example an approach to detect semantic relation
between two given words/phrases using word embeddings [19]. The focus lies on
the symmetric and asymmetric properties of the relations. Most of the datasets
used in this work are derived from Wordnet.

[26] introduces a shared task about semantic relations. Based on this dataset,
KEML, a meta learning framework for predicting lexical relations, is intro-
duced [32].

Finally, the work in this paper falls into the area of Knowledge Graph match-
ing and fusion/integration [13]. The closest related work is STROMA [1] which
follows an enrichment strategy by refining given correspondences with a more
meaningful relation than e.g. equivalence. The approach consists of five tech-
niques consisting of linguistic approaches as well as the use of background knowl-
edge (such as Wordnet).

The Tifi [5] approach combines multiple taxonomies together and uses lexical
and graph features to determine if a given subsumption relation holds or not. The
difference to our work is that the focus lies on the cleaning of those hierarchies
and thus only intra-KG relations are analyzed. Furthermore, the prediction is
binary and indicates only if two given concepts are subsumed. BERTSubs [4]
focuses also on this relation. The idea is to embed concepts with BERT [6]
by transforming classes and other OWL constructs such as restrictions into a
textual representation. They evaluate their approach based on rankings. Given
a concept A, they rank all other entities based on how likely it is that A is a
subclass of this concept.

Except for STROMA [1], there is no system that can directly be applied
to a given dataset to create correspondences between classes which includes
semantic relations. Most of the approaches which use transformer based models,
show specific techniques on how to train such models but do not create a usable
model based on existing data. With TaSeR, we close this gap and present a
model which is able to predict the relation type and can optionally be further
fine-tuned on the test case at hand.

4 Approach

The overall approach is shown in Figure 2. Given two knowledge graphs KG1
and KG2, the task is to find an alignment A consisting of correspondences with
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Fig. 2. Overall approach of TaSeR.

semantic relations (e.g. subsumption, equivalence, part of, etc). TaSeR is a two-
step approach. The first step is to generate candidate correspondences between
classes where the relation is not yet specified (equivalence by default). This can
be achieved by running various matching systems which are able to produce class
correspondences. In a second step, the relation is further refined with the help
of a transformer model. Two cases are analyzed: Case A) a task-specific model
which is directly applied to the candidate set of correspondences. Such a model
is trained on external datasets like DBpedia, Wordnet, and Schema.org. Case B)
on top of the task-specific model, a further fine-tuned model is trained on test
case data such as intra-KG subclass relations. In the further sections, each step
is explained in more detail.

4.1 Creating Candidates / Blocking

Our approach TaSeR needs input class correspondences to further refine the
relation. An advantage is that TaSeR is also able to filter correspondences in
case they are not related at all. This allows using candidate generators that
return many correspondences which may also contain incorrect correspondences
(aligned classes that should not be connected at all, e.g. car and actor).

In general, any matching system or any combination of them can be used
to generate candidates. A low threshold should be used to increase recall and
allow the system to include also near matches. Due to the fact that this is not
the focus of this work, LogMap [15] is chosen as it is a state of the art ontology
matching system.
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Table 2. Analysis of the training datasets which are used to create the task-specific
model.

dataset equivalence sub-/superclass of part of/has part cohyponym negatives
Wordnet 215,672 84,501 9,092 44,329 410,960
DBpedia 58 246 0 198 0
Schema.org 0 1,421 0 826 0
Wikidata 927 127,659 230,897 0 0

4.2 Training Data for Task-specific Model

In this section, the creation of the task-specific model is described. This is one
difference in comparison to other approaches like [4] which present techniques on
how to train models for subsumption prediction but do not provide a concrete
model which can be applied to a dataset at hand.

The overall task is to predict relations between different knowledge graphs
(inter-KG relations) but for training inter- and intra-KG relations can be used.
The reason is that no features are derived which depends on the fact that the
training originates from two different sources. Creating such training sets requires
KGs which have a lot of relations useful for the models such as rdfs:subClassOf
or skos:hasPart etc. In the following, we describe how each KG is used to create
the training dataset. Wherever possible, for all kinds of relations examples are
generated. Table 2 shows an analysis of all datasets and their counts for each
type of relation.

Wordnet [20]: Other approaches like STROMA [1] use Wordnet as their
main background knowledge because of the quality and coverage of concepts.
Therefore in this work, Wordnet is also included.

Wordnet is structured by so-called synsets. They contain different lemmas
which describe the same concept (synonyms). Each synset can have multiple
relations to other synsets such as hypernym, hyponym, and holonym (see also
Table 1). Generating examples for the equivalence relation is achieved by using
all possible combinations between the words in a synset. This also includes the
tuple where the word is equivalent to itself. In each synset the words “are ordered
by estimated frequency of use”2 e.g. “dog” is the most used word but “Canis
familiaris” is also a synonym for it. The sub-/superclass examples are produced
by following the hyponym/hypernym relations between the synsets. As a label,
the first word is chosen as a representation of the synset. For the part of relations,
the same approach is applied but following the meronym/holonym relations. The
second last relation is called cohyponym. Examples are generated by listing all
hypernyms of a given synset and creating combinations between them. Usually,
there are many hypernyms of a given synset and thus only a maximum of five
examples are extracted per synset to not overemphasize this kind of relation.
The last relation is an exception because its semantics is that no relation holds
between the given concepts. The training data for this kind of negative example

2 As stated in https://wordnet.princeton.edu/documentation/wn1wn
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is generated by randomly sampling two synsets. It was ensured that no false
negative is included by checking that the two synsets do not relate with either
hyponym/hypernym and meronym/holonym relations.

DBpedia [2]: Beyond Wordnet, other KGs like DBpedia are used for train-
ing. The class hierarchy in DBpedia is manually created and curated in the
mappings wiki3. The reason why such a mappings wiki exists is that the class
information for each wiki page originates from the MediaWiki templates con-
taining the text “infobox” which is usually rendered at the top right of the
page to highlight some key facts of the concept. But many templates need to
be mapped and processed to create a reasonable KG out of it e.g. the tem-
plate infobox_aircraft_type4 is mapped to the ontological class aircraft. Such a
manual-created taxonomy is helpful in training subsumption relationships.

The training examples for equivalence relation from DBpedia are extracted by
querying the official SPARQL endpoint5 with the query in Listing 1.1 (the from
statement was necessary to retrieve all results without duplicates). All English
labels attached to the classes are queried in case they exist (optional statement).
In cases where the label does not exist, the URI fragment6 is used instead.
In those fragments, no whitespaces are allowed and thus the text is split by
camel case7. Hyphens and underscores are replaced by whitespace. Most of those
equivalence mappings map two different datasets e.g. DBpedia to Schema.org
and thus no label information is available for the external one. The YAGO
mappings are skipped because the mapping only changes the URI but no label
or textual representation. Still, in the resulting equivalence dataset of DBpedia,
most examples map the exact same label to each other which is intentional. For
sub-/superclass relationships, the same query as before is used but the property is
replaced with rdfs:subClassOf. Due to the fact that there is no RDF property
to express a superclass relation, the source and target entity of the subclass
relation are switched. In the same way as for Wordnet, the examples with the
cohyponym relation are created (at a maximum of five for each superclass). In
the DBpedia ontology no further part of or has part relations are defined.

Schema.org [9]: Other public common knowledge graphs such as the first
version of YAGO [28] also use Wordnet as their top-level ontology which is then
used as a type system for all Wikipedia pages. Starting from YAGO 4 [24] they
changed the top-level ontology to Schema.org. It is a taxonomy primarily used
for encoding knowledge in websites with RDFa or Microdata. Consequently, this
top-level ontology is also included as one source of training data.

For Schema.org the corresponding CSV (comma separated values) file8 is
downloaded and all subclass relations are extracted. Again, superclass and cohy-

3 http://mappings.dbpedia.org
4 http://mappings.dbpedia.org/index.php/Mapping_en:Infobox_aircraft_type
5 https://dbpedia.org/sparql
6 The URI fragment is extracted by using the text after the last slash or hashtag.
7 https://en.wikipedia.org/wiki/Camel_case
8 https://schema.org/version/latest/schemaorg-current-http-types.csv
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Listing 1.1. DBpedia query to retrieve all equivalence relations.
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX owl: <http :// www.w3.org /2002/07/ owl#>
SELECT *
FROM <http :// dbpedia.org >
WHERE {

?left owl:equivalentClass ?right.
OPTIONAL{

?left rdfs:label ?leftlabel.
?right rdfs:label ?rightlabel.
FILTER (LANG(? leftlabel) = "en" &&

LANG(? rightlabel) = "en" )
}

}

ponym examples are generated as in DBpedia. No part of or equivalence relations
are available.

WDS Dataset: There are not many relations extracted from DBpedia and
Schema.org. Thus a combination of Wordnet, DBpedia, and Schema.org is cre-
ated. This WDS dataset will later be used to train the corresponding models with
a rather limited set of data. In the next section, a larger dataset is presented
which is extracted from Wikidata.

Wikidata [31]: Usually, more training data helps to improve the classifica-
tion. Thus Wikidata is used as an additional dataset because it is one of the
largest KGs available. Initially, the official endpoint9 of Wikidata is used to re-
trieve all subclass and part of relations. Due to a large number of classes and
relations, the endpoint runs into timeouts. Therefore the endpoint of Virtuoso10

is used. The corresponding query is shown in Listing 1.2 which uses the P279
predicate to retrieve all subclass relations together with all labels. Due to the
availability of labels and the size of Wikidata, the labels are marked as manda-
tory in the query. The high number of results forced us to execute all queries
with limits and offsets to iterate over pages of results. In a similar way, the
part of/has part relation examples are collected (by replacing the property with
wdt:P361). For the equivalence relation wdt:P1709 is used (equivalent property
to owl:equivalenceClass). Similarly to DBpedia, one concept (either source or
target) does not have literals included in Wikidata. Thus the URI fragment is
used again.

4.3 Training of Task-specific Model

Given the general training dataset constructed in the previous section, the ques-
tion remains how a transformer based model is trained. Many of the pre-trained
transformer models such as BERT [6], RoBERTa [17], or Albert [16] are trained
on large amounts of text. The training objective is called masked language mod-
eling where the model should predict a masked token given that it can attend to
9 https://query.wikidata.org

10 https://wikidata.demo.openlinksw.com/sparql
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Listing 1.2. Wikidata query to retrieve all subclass relations.
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
PREFIX owl: <http :// www.w3.org /2002/07/ owl#>
SELECT *
FROM <http :// dbpedia.org >
WHERE {

?left wdt:P279 ?right.
?left rdfs:label ?leftlabel.
?right rdfs:label ?rightlabel.
FILTER (LANG(? leftlabel) = "en" &&

LANG(? rightlabel) = "en" )
LIMIT 10000
OFFSET 0

}

the surrounding tokens bidirectionally. In this work, those models are used but
with a different objective. The overall task is to classify a given example into one
of seven classes (which represent the different relation types in Table 1 plus the
negative class). Therefore each model gets an additional dropout and linear layer
on top (this is also called the head of the model) which transforms the output
of the model into seven neurons (each representing a relation type). For each
example during training exactly one of them should result in the value of one
and all others to zero. The binary cross entropy loss is used to reduce this error.
Each model gets this classification head and is trained with the given examples.
In addition, it is possible to only finetune the head and freeze all layers of the
underlying model but in this work, we adjust all weights.

In the following, the input representation of the training concepts is de-
scribed. For each class, a textual representation is generated. It is usually the
rdfs:label of the class. In case there is more than one label, each label is
transformed into a training example (cross-product in case both concepts have
multiple labels). If no label is available, then the URI fragment is extracted and
post-processed (camel case, hyphens, and underscores as in section 4.2). The
extraction of textual representations can be further customized.

To separate the textual representation of the source and target class, the
pre-trained special token [SEP] is used as a separator. Thus a training example
for the relation has part can look like “body[SEP]leg“. This is similar to the
BERTSubs [4] approach called isolated class (IC). They showed that adding
path context (PC) or breadth-first context (BC) does not improve the result
much (e.g. 0.002 for inter-ontology named subsumption prediction on the HeLiS-
FoodOn test case for hits at one) or even make it worse (e.g. 0.016 less in hits
at five for the same task).

In comparison to BERTSubs we do not only rely on BERT as one prominent
representative of transformer based language models, but also use and evaluate
more common models such as albert-base-v2, bert-base-uncased, distilbert-base-
uncased, and roberta-base.

For the actual training, the transformers library of huggingface [33] is used.
In more detail, the trainer class is executed with the default parameters except
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for the batch size to create a first model. The value for the batch size is increased
as much as possible to A) decrease the training time and B) update the weights
based on more examples with different target relations. Thus the weights are
not changed drastically by a batch that e.g. contains only examples with the
equivalence relation. Each model has different memory requirements and thus
an approach is developed to automatically select the highest possible batch size
given the dataset, model, and GPU. It works as follows: The data set is first
sorted by the overall length of the two input texts such that the longest texts
appear at the beginning. Afterwards different batch sizes b are tried out by
starting with four and multiplying by two after each trial (iterating over the
powers of two). The dataset is cut to the top b examples and only trained for
one step in order to quickly test if the memory of the GPU is large enough to store
everything. If the test works fine, the batch size is increased. If instead an out-of-
memory error is detected, the batch size is divided by two to get the maximum
working batch size. This approach allows for higher batches sizes than trying
out the theoretical maximum which is a batch where each example exhausts the
maximum number of tokens. In case the dataset consists only of rather short
texts, this is an improvement because the batch size could be increased.

In addition to the default hyperparameter (HP) of the trainer, an HP tuning
is executed. The training of transformer based models requires a lot of time and
thus population based training [14] (PBT) is selected as the HP search algorithm.
The underlying idea is based on evolutionary algorithms. In the beginning, there
is a set of models with random HPs based on an initial distribution. After training
and evaluating the models for some number of batches, the hyperparameters of
good performing models are used as a replacement for models which perform
worse. With such an approach the HP can change over time during training.
Thus it is necessary to use the trained model directly because there is no fixed
set of HP such that one can tune a new model based on it.11

4.4 Training of Test Case Specific Model

In the previous section, a task-specific model is created. It is trained on general
knowledge graphs and can thus be used directly to predict a semantic relation
for a given pair of classes. But given the input KGs there is more training data
available. The overall task is to predict inter-KG relationships between classes
and thus intra-KG relations can be used to further fine-tune the model to a given
test case (consisting of two KGs). This will incorporate some knowledge about
the concepts which are later used in the prediction.

11 The number of trained models is fixed to ten and the following hyperparameters are
tuned: learning rate (loguniform between 1e-6 and 1e-4), train epochs (between 1 to
10), seed (uniform distribution from 1 to 40), batch size (choice of 4, 8, 16, 32, 64,
128 until the maximum possible batch size). The mutations of HPs are defined by:
weight decay (uniform between 0.0 and 0.3), learning rate (uniform between 1e-5
and 5e-5), batch size (choice of 4, 8, 16, 32, 64, 128 until the maximum possible
batch size).
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Table 3. Analysis of the evaluation datasets.

dataset equivalence subclass of superclass of part of has part cohyponym
g1-web 275 29 26 2 3 4
g2-diseases 316 27 11 0 1 0
g3-text 70 425 267 0 0 0
g4-furniture 13 107 4 0 11 1
g5-groceries 29 14 113 0 2 11
g6-clothing 10 0 124 0 8 0
g7-literature 12 18 52 1 0 0

To select training examples for the subsumption, we use all triples in each of
the input KG where rdfs:subClassOf is used as a relation. In addition, the source
and target of this relation are switched to also generate examples for the inverse
relation. Similarly, for the equivalence relation the owl:equivalentClass predicate
is used. For all other relations, we use the vocabulary terms defined in Table 1.

In most of the input KGs, only a taxonomy is defined. This results in training
examples consisting only of subsumption relations. Fine-tuning the task-specific
model with such a training set causes the model to adapt to these relations. Thus
another fine-tuning dataset is created. In addition to the examples extracted from
the input KGs, the same number of equivalence examples are sampled from the
corresponding task-specific training dataset. This fine-tuning approach is later
called in the evaluation “test case +”.

5 Evaluation

In this section, the approach TaSeR is evaluated. Due to the fact that it is a
two-step approach, we first evaluate only the prediction of semantic relations
and later define a new measure for evaluating the whole system. In the next
section, the corresponding evaluation datasets are selected.

5.1 Datasets

Most of the existing datasets are not suitable to evaluate our approach because
they do only evaluate equivalence relationships such as the Ontology Alignment
Evaluation Initiative (OAEI) [25]. Only the complex track allows the matching
system to create correspondence which are composed of multiple concepts. But
this is not the same task as presented in this paper where the relation between
two concepts should be evaluated. Thus the dataset of STROMA [1] is used for
evaluation. It contains seven pairs of ontologies from different domains. Each
dataset was in a different format such as tabular separated files and various
OWL formats. Furthermore, the identifier for concepts is not defined by URIs
but by the path of labels from the given concept to the top concept. Due to the
possibility of multiple inheritance, this is not unique.
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Therefore, all datasets are transformed into the OAEI standard format which
consists of a source and target KG in RDF/XML. The reference alignment con-
tains correspondences where each one consists of a source and target URI which
needs to be present in the input KGs. This was explicitly checked and errors (in
the KGs as well as in the reference alignment) were corrected.

All characteristics of the dataset are included in Table 3. It shows for each
test case and semantic relation the number of correspondences included in the
reference alignment. All correspondences are directed and thus the number of
sub-/superclass and part of/has part are not symmetric.

5.2 Results

All trained models are evaluated on the before mentioned dataset. The experi-
ments are executed on NVIDIA Tesla V100 graphic cards and Intel Xeon Gold
6230 processors (2.1GHz). Due to the fact that the models are either trained on
external datasets or on the input KGs, no further train test split needs to be
created. The provided gold standard is solely used for testing. In this section, we
evaluate the predictions of semantic relations given the class correspondences.
Thus not using any candidate generation step. In essence, this boils down to a
multi-class classification task.

Table 5 shows the overall results for each trained model. The runtime of
each model is always below one minute (exact runtimes are given in the supple-
mentary material). We differentiate between the base model, the dataset, and
the fine-tuning method. The WDS dataset consists of Wordnet, DBpedia, and
Schema.org whereas WDS + Wikidata represents the same dataset but adds
all training examples from Wikidata (this increases the number of examples
drastically). To compare all models, the micro averaged F1 is computed across
all classes which in this case represents the kind of semantic relation. Micro
averaged precision and recall are the same as F1 because all false instances
are counted. Thus the following equation holds true (c represents the classes):∑

c FPc =
∑

c FNc.
For the test cases G1 and G2, the task-specific model outperforms the STRO-

MA baseline by 0.038 and 0.053 F1. This is achieved by directly applying the
task-specific model to the dataset without any knowledge of the task. This shows
the overall usability of such models. Starting from G3 one can see that the
fine-tuning on the test cases is really helpful in deciding which relation holds
true between the classes. Except for G6, it turns out that fine-tuning on the
test case together with samples from the training dataset (the one where the
corresponding task-specific model is trained on) is useful (higher F1 for test
case + than for test case). Only training on the subsumption relations of the
input KGs usually gives too high weights to this relation such that the model
overly often predicts those relations. The F1 gains are significant (95% confidence
interval) for test cases G2, G3, and G7.

We finally select the best model which works without test case fine-tuning
such that the research community can directly apply the model without any
changes. For the model selection, all F1 scores are added and the model with the
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Table 4. Two aggregated confusion matrices for DistilBERT over all tasks.

Prediction WDS Prediction WDS+Wikidata
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equivalence 654 24 15 8 15 9 298 93 55 118 156 5

A
ct

ua
l subclass of 173 428 9 0 0 10 23 475 15 93 8 6

superclass of 202 20 358 0 2 15 27 24 386 30 120 10
part of 3 0 0 0 0 0 0 0 3 0 0 0

has part 20 2 0 0 0 3 1 7 0 3 13 1
cohyponym 8 2 5 0 0 1 1 2 3 5 5 0

highest score is selected. It turns out, that more training data or hyperparameter
optimization is not always helpful because DistilBERT trained on the WDS
dataset is achieving the overall best performance (not regarding test case fine
tuning). The training time of the task-specific models can take up to 48 hours.
The best model is shared on the huggingface model hub12.

Table 4 shows two confusion matrices (values summed all over all tasks) of
DistilBERT models. The left one is only trained on the WDS dataset (the chosen
best model). Equivalence, subclass of, and superclass of can be detected quite
well whereas part of and has part is not easy. The right confusion matrix is the
result of the model trained on WDS and Wikidata (which contains more part of
relations), therefore, the predictions for these types of relations are better.

5.3 Evaluation of the Complete System

To evaluate the complete system, the candidate generation step is added and
all resulting relations of the correspondences are further refined with TaSeR. As
already mentioned in [1], the system might find correspondences that are not in
the reference alignment but still valid (especially for subclass relations) e.g. the
system finds that movies are a subclass of entertainment (cf. Figure 1). Such
statements would count as false positives which is incorrect.

Therefore we propose a new measure to circumvent this problem. The fol-
lowing closure approach is applied to each reference alignment as well as system
alignment. If the alignment maps class A to class X with a subclass relation,
then additionally all subclasses of A are also subclasses of X as well as all of
all superclasses of X. Thus many more (implicit) relations between concepts are
added. The equivalence relation is handled as two subclass relations in both
directions. After the reference and system alignment are processed, precision,
recall, and f-measure are computed as usual. We call those measures Pclosure,
Rclosure, and F1−closure. With such a definition, it is also possible to extend it
to the case where the gold standard is not complete but partial.
12 https://huggingface.co/dwsunimannheim/TaSeR
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Table 5. Micro averaged F1 results of all trained models differentiated by base model,
datasets used for training, and kind of fine-tuning. STROMA serves as a baseline that
is optimized for this gold standard. The top three values are printed in bold.

Base model Dataset Fine-tuning G1 G2 G3 G4 G5 G6 G7

Albert

WDS
Task 0.422 0.673 0.906 0.125 0.314 0.261 0.651

Test case 0.127 0.096 0.886 0.728 0.621 0.824 0.771
Test case + 0.434 0.746 0.912 0.721 0.663 0.761 0.940

WDS
+HP Tuning

Task 0.540 0.758 0.886 0.213 0.361 0.211 0.566
Test case 0.091 0.096 0.895 0.757 0.645 0.810 0.807

Test case + 0.575 0.797 0.878 0.779 0.710 0.817 0.687

WDS
+Wikidata

Task 0.121 0.273 0.941 0.375 0.485 0.451 0.627
Test case 0.118 0.099 0.932 0.699 0.680 0.838 0.783

Test case + 0.248 0.727 0.915 0.757 0.704 0.824 0.880

Bert

WDS
Task 0.534 0.752 0.919 0.228 0.385 0.261 0.639

Test case 0.109 0.093 0.932 0.699 0.663 0.831 0.759
Test case + 0.348 0.718 0.927 0.779 0.728 0.852 0.723

WDS
+HP Tuning

Task 0.560 0.741 0.896 0.250 0.385 0.268 0.651
Test case 0.103 0.087 0.913 0.699 0.663 0.817 0.735

Test case + 0.440 0.758 0.904 0.691 0.716 0.845 0.747

WDS
+Wikidata

Task 0.136 0.400 0.944 0.500 0.485 0.331 0.663
Test case 0.124 0.115 0.946 0.772 0.680 0.852 0.783

Test case + 0.428 0.775 0.944 0.691 0.710 0.845 0.831

DistilBERT

WDS
Task 0.767 0.828 0.929 0.154 0.420 0.268 0.590

Test case 0.100 0.085 0.883 0.699 0.698 0.852 0.783
Test case + 0.378 0.727 0.924 0.662 0.746 0.838 0.771

WDS
+HP Tuning

Task 0.720 0.786 0.925 0.191 0.373 0.197 0.566
Test case 0.094 0.087 0.928 0.721 0.645 0.852 0.783

Test case + 0.372 0.783 0.919 0.706 0.769 0.824 0.747

WDS
+Wikidata

Task 0.183 0.510 0.946 0.331 0.367 0.317 0.675
Test case 0.115 0.144 0.942 0.728 0.704 0.866 0.771

Test case + 0.419 0.735 0.934 0.743 0.734 0.838 0.771

Roberta

WDS
Task 0.799 0.820 0.916 0.272 0.373 0.204 0.554

Test case 0.118 0.099 0.865 0.750 0.550 0.831 0.675
Test case + 0.363 0.445 0.930 0.735 0.627 0.810 0.759

WDS
+HP Tuning

Task 0.799 0.845 0.841 0.250 0.296 0.155 0.494
Test case 0.124 0.099 0.883 0.728 0.669 0.803 0.663

Test case + 0.472 0.727 0.898 0.728 0.669 0.824 0.747

WDS
+Wikidata

Task 0.021 0.090 0.886 0.287 0.479 0.275 0.518
Test case 0.115 0.101 0.883 0.728 0.680 0.838 0.771

Test case + 0.268 0.811 0.882 0.743 0.740 0.831 0.771
STROMA - - 0.761 0.792 0.854 0.765 0.716 0.866 0.807

We evaluate the complete system with this measure and show the results in
Table 6. The recall can be increased by using candidate generation models which
return more correspondences and are thus more recall-oriented (due to the fact
that TaSeR is also able to filter correspondences that are not related at all).
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Table 6. Evaluation of complete system (micro averaged).

Measure G1 G2 G3 G4 G5 G6 G7
Pclosure 0.701 0.401 0.422 0.688 0.946 0.715 0.825
Rclosure 0.815 0.695 0.162 0.630 0.658 0.305 0.371
F1−closure 0.754 0.508 0.234 0.658 0.776 0.428 0.512

6 Conclusion and Outlook

In this paper, we presented TaSeR, a transformer based model for semantic re-
lation prediction. Most state of the art matching systems do only output equiv-
alence relations for classes which is too imprecise to use it for KG integration.
TaSeR is based on two steps: (1) Generate candidate correspondences with any
matching system, and (2) predict the most appropriate relation between them.

In addition, we transformed a given gold standard into the OAEI format and
plan to submit a new track in 2023. We show that transformer models trained
on general knowledge graphs such as Wordnet, DBpedia, and Schema.org can
outperform STROMA which is one strong system developed especially for the
gold standard used here. It could be shown that fine-tuning on the test case (by
using intra-KG relations) can further improve the prediction.

In the future, we plan to extend our model to also deal with multilingual
input. This can be achieved by using multilingual transformer models such as
bert-base-multilingual-uncased together with additional training data. Those can
be created from datasets like EuroWordNet [30], Wiktionary [27], and Babel-
Net [21]. Other datasets used in this approach like Wikidata also include labels
for a concept in different languages which would also help. In such a case, one
can also train the model to find semantic relations between classes of different
languages e.g. car (English) is a subclass of vehículo (Spanish).

Another direction for future work is to increase the number of possible seman-
tic relations. Probably the most interesting relation is the “is a” relation which is
different from the subclass relationship because the former connects an instance
to a class whereas the latter should only connect classes. In essence, this boils
down to detecting if a concept is an instance or a class. Training data for this
relation is not directly available in Wordnet, but in other knowledge graphs like
DBpedia or Wikidata. It is still unclear how the training of such models should
look like and how much data is actually necessary to achieve good results. Such
a model could be used for WebIsALOD [11] to create a proper ontology.

In this work, we mainly used the dataset given by STROMA [1]. Other
datasets do not contain many semantic relations but only one or two as in the
case of BERTSubs [4]. Still, we would like to include more datasets in the future
to get a higher variety of datasets even though some of them might only care
about subsumption.

All supplementary materials can be found at figshare [10].
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