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Abstract. The diverse research efforts in recent years in the area of
stream reasoning (SR) led to a wide range of SR engines. However, the
lack of standardization and the diverse choices in SR (e.g., tuple-driven
vs. time-driven engines, streaming all results vs. newly derived ones, . . . )
mean that real comparability among the engines is hardly given. A first
step towards achieving comparability and standardization is the RSP-QL
model, implemented in the RSP4J framework, which allows for describ-
ing and formalizing the semantics of SR engines. To further advance
the state of the art in comparative research of stream reasoning, we
present the results of a survey to quantify the in-use importance of sev-
eral key performance indicators (KPIs) and features and compare SR
engines along these KPIs with the CityBench and the CSRBench oracle.
Our analysis shows that the two RSP4J implementations C-SPARQL2.0
and YASPER outperform the well-known C-SPARQL implementation
in terms of performance and configurability. Our comparison against a
naive SR extension of the incremental reasoning engine RDFox shows
that SR engines still have potential for improvement. To avoid a costly
integration of engines into several different benchmarking environments,
we finally present a unifying interface, already aligned with the City-
Bench and CSRBench, for benchmarking SR engines.

Keywords: Stream Reasoning · RSP4J · RDFox · C-SPARQL · City-
Bench · CSRBech · Benchmarking Interface

1 Introduction

Research in the area of stream reasoning (SR) has gained popularity in recent
years [10] because the fields of application are vast, reaching from smart cities [11]
over industry 4.0 scenarios [12] to the internet of things [22]. Stream reasoning
aims at making sense of dynamic data streams combined with static background
knowledge in real-time. To meet the requirements necessary for reaching this
vision, researchers theoretically investigated the area of stream reasoning, sug-
gested approaches and models that tackle some requirements, and built stream
reasoning engines, mainly as proof of concept implementations, to test their ap-
proaches and compare them in practice. Examples for such stream reasoning
engines are C-SPARQL [4], SPARQLSTREAM [6], and CQELS [16].
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Since these engines have been developed individually by different research
groups, each having their own ideas and no binding standard being established,
there are significant differences in the engines’ behavior, performance, and func-
tionality. Multiple query languages have been proposed as well, which fostered
the breadth of research but hindered a fair comparison between stream reasoning
engines. In order to identify and name differences in the operational semantics of
existing engines, Botan et al. [5] came up with the descriptive SECRET model
for stream reasoning engines that was then extended into a unifying standard
model for the semantics of SR engines, the RSP-QL model [8]. The recently pub-
lished RSP4J framework [23] implements this standard and proposes prototype
engines. In this paper, we present the following contributions:

– While it is broadly recognized that benchmarking fosters research and ap-
plications by helping to identify superior techniques and best practices, it
is less clear which measurable KPIs are the most relevant ones in practice.
We empirically evaluate the in-use importance of several KPIs and features
through a survey, which gives a clearer context for benchmark results.

– We analyze four stream reasoning engines theoretically and compare their
performance regarding several KPIs using common SR benchmarks. The en-
gines C-SPARQL2.01 and YASPER [24] are based on the newly introduced
RSP4J framework, while another one is the commonly known baseline imple-
mentation C-SPARQL [4]. The last one is the high-performance incremental
reasoning engine RDFox [17], which we extended for its use as SR engine.

– In order to avoid the time-consuming task of integrating one SR engine at
a time into different benchmarking environments, we developed a flexible,
unifying interface for benchmarking SR engines. Two popular benchmarks,
namely CityBench and CSRBench, are already aligned with the interface
and can, hence, directly be used with any SR engine adapting the interface.

The paper is structured as follows: Section 2 introduces the definitions that
are necessary for understanding what follows. Section 3 gives an overview of
related work and, in Section 4, we introduce the considered engines and provide
a theoretical categorization. In Section 5, we showcase and discuss the results of
our survey as well as of our benchmarking efforts before we present the unifying
interface for SR benchmarks in Section 6. Section 7 sums up our findings and
gives an outlook on open issues that should be addressed in future research.

2 Preliminaries

We assume interested readers to be familiar with the basics of the RDF data
model [19] and the SPARQL query language [2]. In the following, we focus on
RDF Stream Processing (RSP) aspects, i.e., on extensions of RDF and SPARQL
for dealing with the continuous processing of (RDF) data streams.

Stream reasoning engines work on (static) RDF graphs in combination with
dynamic RDF streams. Those streams are RDF triples combined with a mono-
tonously increasing timestamp that indicates the arrival time of the triples:

1 https://github.com/streamreasoning/csparql2
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Definition 1 (RDF Streams). Let t0, . . . , tn be RDF triples and τ0, . . . , τn
timestamps such that, for each 0 ≤ i < j ≤ n, τi < τj, then the sequence
(⟨t0, τ0⟩, . . . , ⟨tn, τn⟩) is an RDF stream.

Note that we can see an RDF stream (⟨t0, τ0⟩, . . . , ⟨tn, τn⟩) w.r.t. a current
timestamp τc, τ0 ≤ τc ≤ τn, such that the sub-sequence (⟨t0, τ0⟩, . . . , ⟨ti, τi⟩),
τ0 ≤ τi < τc, consists of past and the sub-sequence (⟨tj , τj⟩, . . . , ⟨tn, τn⟩), τc <
τj ≤ τn consists of future (timestamped) triples.

Most SR engines work on snapshots of the data streams, so-called windows,
which consist of a sub-sequence of the streamed data w.r.t. some point in time.

Definition 2 (Windows). Given an RDF stream (⟨t0, τ0⟩, . . . , ⟨tn, τn⟩) and
a current timestamp τc, τ0 ≤ τc ≤ τn, a physical window of (window) size
w ∈ IN is the sub-sequence (⟨ti, τi⟩, . . . , ⟨tc, τc⟩) of (⟨t0, τ0⟩, . . . , ⟨tn, τn⟩) such
that #{τi, . . . , τc} = w, i.e., the window consists of the last w triples.

Given an RDF stream (⟨t0, τ0⟩, . . . , ⟨tn, τn⟩), a starting time τ0, a window
size w ∈ IN, and a step size s ∈ IN (s ≤ w), the ith logical window Wi opens
at τo = τ0 + i ∗ s, closes at τc = τo + w and contains the (timestamped) triples
{⟨t, τ⟩ | τo ≤ τ < τc}. A logical window is called a tumbling window, if s = w,
and it is called a sliding window if s < w.

Note that in practice, one might also consider initial physical windows that
contain less than w triples, whereas the current definition considers the first
window to be defined only when w triples are available at the current point
in time. Note further that the contents of tumbling windows are always non-
overlapping, whereas sliding windows have an overlap.

Since most SR engines perform reasoning and query answering on the (static)
windows, we distinguish three types of necessary operators: Stream-To-Relation
(S2R), Relation-to-Relation (R2R), and Relation-to-Stream (R2S), where S2R
operators typically perform some kind of windowing on data streams, R2R oper-
ators usually process SPARQL-like queries that produce static variable bindings
(i.e., again relational data), and R2S operators transform these bindings back
into data streams [3]. Regarding R2S operators, we distinguish RStreams, which
emit the current solution mappings, IStreams, which emit the difference between
the current and the previous solution mappings, and DStreams, which emit the
difference between the previous and the current solution mappings.

Most SR query languages are extensions of SPARQL that additionally allow
for setting the necessary information to execute SPARQL-like queries continu-
ously over given data streams. An example is given in Listing 1.1, which registers
a query as an RStream (Line 3) and specifies windows over which patterns are
to be executed (Lines 5 and 7).

Window-based querying opens up several choices in terms of query execution
semantics. The SECRET model [5] allows for characterizing these choices along
four complementary dimensions: ScopE, Content, REport, and Tick. Given
a query’s window parameters, ScopE defines the time interval for the active
window. Content then specifies the elements of a stream that are in scope. REport
states under what conditions those window contents become visible to the query
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1 PREFIX ses: <http :// www.insight -centre.org/dataset/SampleEventService#>
2 PREFIX ssn: <http :// purl.oclc.org/NET/ssnx/ssn#>
3 REGISTER RSTREAM <q1 > AS
4 SELECT ?obId1
5 FROM NAMED WINDOW <w1 > ON ses:AarhusTrafficData182955 [RANGE PT3S STEP PT1S]
6 FROM <http :// localhost/WebGlCity/RDF/SensorRepository.rdf >
7 WHERE { WINDOW <w1> { ?obId1 ssn:observedBy ses:AarhusTrafficData182955 . } }

Listing 1.1: An example (streaming) query

processor for evaluation and result reporting. Possible report strategies include
the window close strategy, where results are reported, when a window closes,
periodic (time-based) reporting, and reporting when the current window contains
changed content (content change), or is non-empty (non-empty content). Finally,
Tick (aka “window state change” or “window re-evaluation”) models what drives
an SR engine to take action on its input, which can, for example, be tuple-driven
(when a triple arrives) or time-driven.

3 Related Work

To enable meaningful benchmarking in the area of stream reasoning, descriptive
models are needed that can characterize the differences between existing engines
and, thus, raise the comparability. On the other hand, benchmarks should push
the systems to their limits in various respects and automatically measure the
corresponding KPIs.

Correctness and Comparability. Only if the SECRET primitives of dif-
ferent engines are aligned and well understood, a fair comparison can be made.
The SECRET framework is the basis for the RSP-QL model [8], which aims
at unifying the semantics of SR engines. RSP-QL extends the SECRET model
with data types like time-varying graphs, instantaneous graphs, and R2S op-
erators and, thus, allows for a formal definition of correctness in SR systems.
The correctness of SR engines can be checked automatically using the CSR-
Bench [9], which comes with a configurable oracle that compares the answers
of an SR engine with expected answers w.r.t. its SECRET primitives and for
different start times. The RSP4J framework [23] is the first RSP-QL compliant
Java API designed to facilitate the building of new SR engines and to foster the
comparability among these systems.

Benchmarking. Scharrenbach et al. consider inference support over back-
ground knowledge or correct and efficient time modeling as essential properties
of stream processing systems and, against this background, propose seven com-
mandments for effective benchmarking of stream processing systems [21]. The
benchmarks should challenge the systems in different dimensions including load
balancing, various joins and aggregates, as well as the usage of various types of
background knowledge. These proposals and the CityBench [1], which is based on
real sensor data collected within the CityPulse project, combined with imaginary
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Table 1: Properties of the considered SR engines
C-SPARQL C-SPARQL2.0 & RDFox

YASPER
Scope

physical & logical windows logical windows logical windows
start time cannot be set start time can be set start time cannot be set

Content / RSP-QL Dataset
content merged individually named content merged
into default graph windows into default graph

Report
window close & configurable periodic
non-empty content

Tick
time-driven configurable time-driven

(configurable interval)
R2S Operator

RStream configurable RStream
empty relations are empty relations are empty relations are
transmitted not transmitted not transmitted

movement data, are the basis of our work. The CityBench allows for various con-
figurations, from the input stream rate to different sized background data files,
over queries with variable numbers of input streams, to a configurable number
of queries to be executed in parallel. Meanwhile, the CityBench measures the
latency, memory consumption, and completeness of the considered engines.

Because it is time-consuming to integrate several SR engines into multiple
benchmarks individually, Tommasini et al. proposed approaches to unify parts
of the SR engines with Heaven [25] and RSPLab [26] and Kolchin et al. de-
veloped the YABench as an extensive benchmarking framework with multiple
supported KPIs [14]. In addition, the results of some practical comparisons of
the performances of existing engines have been published, e.g., comparing the
performance of C-SPARQL and CQELS [20, 7].

The HOBBIT platform2 aims at providing a general, distributed, open-
source, evaluation platform for semantic technologies. Due to its generality, the
platform is more complex than a dedicated SR benchmark, while it is not target-
ing SR intricacies such as aligning the systems along the SECRET primitives.

4 Stream Reasoning Engines

In the following, we introduce the evaluated SR engines and compare them with
regard to their SECRET and RSP-QL primitives (see Section 2 for the necessary
definitions). Table 1 summarizes the categorization of the engines.

C-SPARQL. Continuous SPARQL (C-SPARQL) was introduced in 2010 by
Barbieri et al. [4] as a query language extension for SPARQL. It came along with
an open-source proof-of-concept Java implementation, the C-SPARQL engine,

2 https://project-hobbit.eu/



6 N. Gruber and B. Glimm

which is still a common baseline implementation. The C-SPARQL engine is
provided as an open-source Java project on GitHub.3

C-SPARQL2.0 and YASPER. C-SPARQL2.04 and YASPER [24] are
the first two prototype engines based on RSP4J, provided as Java open-source
projects. While C-SPARQL2.0 uses Esper5 for windowing and Jena6 for query-
ing, YASPER is a from-scratch implementation within RSP4J. C-SPARQL2.0
can be used to evaluate the performance of the RSP4J framework whereas
YASPER, with its high degree of abstraction, is built for teaching. RSP4J-based
engines allow for configuring their SECRET primitives and as they are RSP-QL
compliant, using RSP-QL as a query language, they are more expressive than,
for example, C-SPARQL due to the naming of the time-varying graphs.

RDFox. RDFox [17] is a highly-scalable, parallelized in-memory RDF store,
which is currently commercially licensed and maintained by Oxford Semantic
Technologies.7 RDFox is not a stream reasoning engine per se, but it supports
incremental (datalog) reasoning, has an extensive query support and shows an
excellent performance. Hence, a comparison with RDFox gives an interesting
perspective on the performance of dedicated SR engines.

For extending RDFox into an SR engine, we used similar SECRET primitives
as those of C-SPARQL and implemented logical windowing. We parse queries
in two parts: first, the information about the static/dynamic data and the win-
dows is read, before the actual SPARQL query is parsed. We deliberately store
the static and streamed data in the same data store (within the default graph)
this allows for processing all data at the same time and perform reasoning on
it. Since C-SPARQL follows a time-driven tick and a window-close report strat-
egy, which is no different from a time-driven report strategy except for the first
window, we implemented a time-driven tick and report strategy. We update the
data store at the periodic step size interval of every stream (report) and evaluate
the query every 15 milliseconds (tick).8 Implemented optimizations include the
adjustment of the tick interval and the adding of an offset to the data store
updates depending on the number of concurrent queries, as well as the aggre-
gation of the streamed data prior to the execution of data store updates. Since
the internal dictionary for recording resources in RDFox grows with newly ar-
riving triples, we regularly refreshed the data store (exported and reimported
the triples) depending on the relative size of the dictionary. This prevents the
RDFox server from growing linearly during the runtime and only has a negligible
impact on the latency. We refer interested readers to GitHub9 for the complete
implementation details.

3 https://github.com/streamreasoning/CSPARQL-engine
4 https://github.com/streamreasoning/csparql2
5 https://www.espertech.com/esper/
6 https://jena.apache.org/
7 https://www.oxfordsemantic.tech/
8 The tick interval of 15 milliseconds was chosen experimentally as it was a good
trade-off between low latency and not putting too much load on the engine.

9 https://github.com/SRrepo/CityBench-CSPARQL-RDFox/tree/master/src/org/

java/aceis/utils/RDFox
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5 Evaluation

In this section, we present the results of our survey on the in-use importance of
features and KPIs of SR engine as well as the benchmarking results.

5.1 Features and Key Performance Indicators

We start by introducing a list of features and KPIs which are the structured
sum of previous publications and community discussions [1, 9, 20]. We further
provide a short theoretical comparison of the considered SR engines regarding
each feature while the presented benchmarking results cover the remaining KPIs.
Latency. The latency of a stream reasoning engine refers to the average amount
of time between the input arrival and the output generation for every triple.
This performance indicator can be measured within the CityBench testbed. All
considered engines internally use a periodic/time-driven tick strategy, which is
essential for a fair comparison. A fair comparison with CQELS [16], for example,
would not be possible because CQELS instantly reacts to the arrival of each triple
and, therefore, offers a better latency.
Memory Consumption. The memory consumption of a stream reasoning en-
gine refers to the average amount of memory used by the engine during its run-
time. The CityBench testbed provides a possibility to measure this performance
indicator. However, it also impurifies the results because it does not distinguish
between the memory consumption of the engine and the memory consumption
of the testing environment (which, for instance, stores the processed answers).
To give a finer-grained picture, we analyzed the memory consumption during
every execution in detail.
Completeness. The completeness of a stream reasoning engine refers to the
percentage of correctly processed input triples. In our setup of the CityBench
testbed, completeness is measured by setting the number of unique observations
captured by the SR engine (#CO) in relation to the number of unique observa-
tions produced by the test bed generator (#PO), i.e., we compare #CO/#PO.
Maximum Throughput. An SR engine’s maximum throughput characterizes
the maximum amount of RDF triples that the engine can handle per time unit.
This performance indicator cannot be measured automatically by any (existing)
benchmarking environment because the maximum throughput depends, for ex-
ample, on the complexity of the query, the size of the static background data,
and the number of concurrent queries. The CityBench, however, allows for con-
figuring the frequency and rate of input streams. In the following, we compare
the latency, memory consumption, and completeness of the engines as a func-
tion of the input rate of the streams. Especially the dependencies between the
input rate and the latency/completeness allow for making statements about the
maximum throughput of the engines.
Correctness / Approximation Quality. We refer to correctness in the con-
text of stream reasoning engines in terms of RSP-QL correctness [8]. To validate
the functional correctness of the engines with respect to their execution seman-
tics, we used the CSRBench oracle.



8 N. Gruber and B. Glimm

Table 2: Features of the considered SR engines
C-SPARQL C-SPARQL2.0 & RDFox

YASPER
Support of Background Data

supported supported supported
(RDFS-)Reasoning / Inference Support

RDF entailment OWL 2 entailment OWL 2 entailment
Distributed Streams

supported supported supported
Distribution Computation

not supported not supported parallelization/distribution
across physical cores

Guaranteed Performance Level
not supported not supported not supported

Intern Mode of Operation
see Table 1

Special Query Language Features / Expressiveness
timestamp function naming of streams extensive datalog reasoning

Maintenance and Further Development
research group maintained research group maintained commercial software
no active development under active development under active development

Support of Background Data. This feature refers to an SR engines’ ability
to process queries with respect to static background data and streamed data.

(RDFS-)Reasoning / Inference Support. Stream reasoning engines gen-
erally allow for reasoning under a specific entailment regime. This means, they
can entail new facts from given data and knowledge [13].

Distribution. The distribution of an SR engine can either refer to its ability
to process distributed data streams or its ability to work on multiple physical
machines in parallel.

Guaranteed Performance Level. If an SR engine supports a guaranteed
performance level, it allows for configuring a maximum time interval between
the initiation and the answering of a query (e.g., 50 ms). The answers might be
incomplete or approximated, but in time.

Intern Mode of Operation. For some applications, the intern mode of opera-
tion (e.g., the supported windowing technique, the tick strategy, or the supported
R2S operators) of an SR engine might be relevant.

Special Query Language Features / Expressiveness. We consider features
that are rarely supported by SR engines and suit a particular application use
case, as special features. Expressiveness refers to the complexity of queries that
are supported by the respective query language of an engine.

Maintenance and Further Development. The level of maintenance, sup-
port, and the regularity of updates for an engine can be important factors for
users of SR engines.
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Fig. 1: Survey Results

5.2 Survey Results

Given the multitude of features and KPIs, the question arises as to which of
them are particularly important for many real-world applications. To address this
question, we conducted a survey with 46 developers, who worked on applications
that internally use an SR engine. We asked them to assess the importance of
each feature and performance indicator for their application on a scale of 1 (not
so important), 2 (important), and 3 (very important). The results are presented
in Figure 1 with full details available on GitHub.10

The results indicate, that the correctness of a stream reasoning engine is
essential to almost any application. It is, therefore, very important for an SR
engine to pass the CSRBench (or YABench [14]). The survey results also sug-
gest that many developers consider the maximum throughput of an SR engine
to be more important for their application than the engines’ latency. Further-
more, developers need SR engines to be reliable and maintained to benefit from
their usage. The distribution (to multiple physical machines) and the memory
consumption were rated as least important features/KPIs.

5.3 Benchmarking Setup

We performed all our experiments with the CityBench on a Lenovo ThinkPad
T480 with 8 Intel(R) Core(TM) i5-8350U CPUs clocked at 1.70GHz and 8 GB

10 https://github.com/SRrepo/SurveyResults
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Fig. 2: Change of KPIs with a varying input rate

RAM. Note that due to space limitations, we can only present a representative
sample of the CityBench results below. All the setups (CityBench and CSR-
Bench) and complete results are available in GitHub.11 We used RDFox 5.4 and
left the number of allowed threads to the default, which is the number of logical
cores. For all other engines, we used their latest versions from GitHub.12

To improve the runtime efficiency, we performed two warm-up runs that
lasted 130 seconds each before we started the experiments, which lasted 10 min-
utes or until all the available data was streamed.

5.4 CityBench Results

To examine the performance of the engines from different angles and to push
the systems to their capacity limits in various ways, we used four scalability
factors: the input rate, the number of concurrent queries (duplicity), the size
of background data, and the number of parallel input streams. The following
diagrams show the changes in latency, memory consumption, and completeness
of the engines as a function of these scalability factors. The completeness is
marked as a percentage next to the latency.

We used Query 1 of the CityBench for the presented experiments with the
input rate and duplicity and variants of Query 1 which use larger background
files for the experiments with varying background data. For the experiments
with an increasing number of input streams, we used variants of Query 10. Note
that the complexity of the chosen queries is rather low as they neither include
calculations, filters, and aggregations nor UNION and OPTIONAL, which are
computationally more complex operators [18].

Input Rate. The results in Figure 2 show that the RDFox-based engine can
handle large data streams without problems using its incremental maintenance

11 https://github.com/SRrepo/
12 C-SPARQL2.0 commit number: f682cdc427d85594b39f9b4aa8d86e04833c8368,

YASPER commit number: aea74443955e1ab3b95de7b0ef65f7c1dbd51d08,
C-SPARQL commit number 4be27dd5ca23550da6bf7fb4e3420b0eb75132f0
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Fig. 3: Change of KPIs with a varying number of concurrent queries

algorithm. The implementation can be seen as a baseline in terms of complete-
ness because it does not drop input triples when it faces an overload and is built
in a way that no input is missed at the boundaries of a window. Meanwhile, the
system’s memory consumption is minimal. The RSP4J-based engines can also
handle large amounts of input triples without losing much in terms of complete-
ness. Their completeness decreases in dependence of how many input triples get
lost at the boundaries of a window. C-SPARQL, on the other hand, successfully
processes the query with an increased latency at a high completeness level up to
around 5500 triples per second before its completeness suddenly collapses.

Duplicity. The results for concurrently executed queries are shown in Fig-
ure 3. If the number of queries to be executed in parallel rises, the SR extension
of RDFox increases its tick interval and adds an offset. Because the same query
is executed multiple times and the results are evaluated centrally in the City-
Bench testbed, no significant changes in performance can be detected. If different
queries were executed, the latency would increase to a uniform but overall higher
level, depending on the tick interval, while the completeness would remain the
same. The memory consumption would rise because multiple data stores were
needed. With the RSP4J-based engines, significant memory consumption can be
observed because these engines cache the static data for each query individually.
The latency of C-SPARQL2.0 remains almost constant, whereas YASPER was
not able to execute 50 queries in parallel because the available system memory
was exceeded. C-SPARQL shows an increasing latency, while its memory usage
remains constant in the trade-off between memory consumption and latency.

Background Data. Figure 4 shows the results of our experiments with
background data sets of different sizes. The RDFox extension once again exhibits
a low latency because its periodic report is initiated exactly after the first receipt
of input triples. Only the latency of C-SPARQL is affected negatively by an
increased amount of background data. On the other hand, the results indicate
that RDFox manages large amounts of data in a very memory-efficient way
compared to the conventional SR engines.
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Fig. 4: Change of KPIs with a varying size of background data

Q10 Q10 5 Q10 8 Q10 8-F2
101

102

103

104

105

99.8 99.8
99.8

13.5
99.8 99.8 99.8

71.9
93.1 40.3

37.0

100 100

100

87.1

variants of Query 10

la
te
n
cy

(m
s)

C − SPARQL

C − SPARQL2.0

Y ASPER

RDFox

Q10 Q10 5 Q10 8 Q10 8-F2
0

50

100

150

variants of Query 10

m
em

o
ry

co
n
su
m
p
ti
o
n
(M

iB
)

C − SPARQL

C − SPARQL2.0

Y ASPER

RDFox

Fig. 5: Change of KPIs with a varying number of input streams

Number of Input Streams. Finally, our findings in combination with
different numbers of input streams are depicted in Figure 5. We used Query 10 ,
Query 10 5, and Query 10 8 of the CityBench and increased the frequency of
Query 10 8 to 2 (Q10 8-F2). These queries do not only test the engines’ ca-
pabilities to process multiple input streams, but also their ability to handle a
large number of answers because Query 10 8 produces 38 (68) output bindings
per second at a frequency level of 1 (2). The results show that RDFox and C-
SPARQL2.0 are able to handle a large number of query answers per time unit
while C-SPARQL and YASPER face an overload.

Discussion. Generally, our performance measurements for C-SPARQL are
consistent with most previous work [1, 20, 15] though the presentation of our
results differs from previous publications as we directly relate completeness to
latency. Thus, it is noticeable when stable latency is measured for an engine
simply because it no longer processes all results correctly. The presented results
indicate that RDFox, which is (one of) the most efficient and highly optimized
incremental reasoning engines, is also competitive when being used as SR engine.
Furthermore, the empirical results illustrate the potential for improvement that
still exists in the prototypical and not fully optimized implementations of the
RSP4J framework.
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Table 3: RSP-QL correctness of SR engines using the CSRBench oracle
C-SPARQL C-SPARQL2.0 YASPER RDFox

Query 1 � � � �
Query 2 � � � �
Query 3 � � � �
Query 4 � � –a �
Query 5 × ×b ×b �
Query 6 � � � �
Query 7 � � � �

a YASPER does not yet support the AVG-function, which is necessary for Query 4.
b For a sliding window with a window size of 5 time units and a step size of 1 time
unit and assuming an RStream, C-SPARQL2.0 and YASPER are expected to return
every answer five times. While most answers are indeed returned five times, some
are only returned four times. We conjecture that this is due to internal temporal
imprecisions introduced by a processing overhead.

5.5 CSRBench Results

Since our survey underlines the importance of the correct functioning of SR
engines, the results of the CSRBench take on special significance. Table 3 shows
the results of our experiments with the CSRBench oracle. All queries but Query 5
of the CSRBench use tumbling windows, for which the periodic and the window-
close report strategies are equivalent (see Section 2). While C-SPARQL’s answers
do not match the expected answers for Query 5 because it reports the first
window before it closes [9], the answers of our RDFox extension were accepted,
even though the engine uses a periodic report strategy which is not supported
by the oracle. This is because RDFox does not return empty answers and the
first open windows do not contain any data that produces answers.

6 A Unifying Interface for Stream Reasoning Benchmarks

As it is very time-consuming to integrate one SR engine at a time into multiple
benchmarking environments, we suggest a unifying interface for SR benchmarks
that should speed up future benchmarking. The proposed interface is divided
into three consecutive phases: the initialization (see Figure 6), the processing
(see Figure 7), and the evaluation phase (see Figure 8). Some parameters such
as the engine name and specific benchmark parameters are required. Optional
parameters include the RDF serialization format in which the data is streamed,
the configuration URL, the answers URL, the query language of the engine, and
the waiting time after the streams end. Reasonable defaults for the parameters
are foreseen and can be found in GitHub.13 The interface comes along with
several advantages:

13 https://github.com/SRrepo/CSRBench-Aligned/blob/master/Parameters.md
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Alignment of CityBench and CSRBench. We already aligned the City-
Bench14 and the CSRBench15 with the interface. Using these proof-of-concept
implementations, we were able to reproduce the results presented in the last
section with an aligned C-SPARQL16, and central classes of these projects can
easily be used for the alignment of further benchmarks.

Speed Up. The unifying interface speeds up benchmarking for developers
of benchmarks as well as SR engines. For simplicity, let us assume that three SR
engines and three benchmarks exist. Currently, if a new SR engine is developed
and should be benchmarked, it has to be integrated into all three benchmarks
individually. Since the developer first has to understand each benchmark’s func-
tionality, this process takes at least one week per benchmark, according to our

14 https://github.com/SRrepo/CityBench-Aligned
15 https://github.com/SRrepo/CSRBench-Aligned
16 https://github.com/SRrepo/CSPARQL-Running-Example-For-Unifying-Interface
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Fig. 8: Sequence and steps of the evaluation phase
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experience. If all benchmarks were aligned with the interface, the developer
would only have to write one single wrapper that implements the interface for
the engine. Since dealing with the functionality of each individual benchmark is
not needed any more and large parts of our C-SPARQL example can be adopted,
this process probably takes less than one week. Analogously, the development
time of a new benchmark can be significantly reduced by using the interface. In
agreement with the developers of RSP4J, a standardized RSP4J runner compo-
nent could even be used to automatically test every RSP4J-based engine with
all aligned benchmarks, regardless of its implementation details.

Engine Independence. Another advantage of the interface is that the
SR engine runs independently of the benchmark in a separate process. This
allows for measuring, e.g., the memory consumption more cleanly and, by using
sockets, standardized RDF formats, and JSON for the communication between
benchmark and engine, we enable a smooth benchmarking of SR engines that
are not written in Java or already compiled.

Expandability. As the engines store all data in a time-annotated fash-
ion and the benchmark evaluates the performance retrospectively, future bench-
marks can easily introduce new KPIs.

7 Conclusions

In this work, we empirically demonstrated RSP4J to be sound and performant.
We also highlighted its advantages over C-SPARQL in the prototype imple-
mentations C-SPARQL2.0 and YASPER. Furthermore, this work reveals how
a high-performant SR engine can be built on top of the incremental reasoning
engine RDFox. The presented survey highlights the importance of functional
correctness in SR engines for real-world applications and the unifying interface
for SR benchmarks forms the basis for simplified future benchmarking.

Future research could, on the one hand, extend the RSP4J framework with a
unified benchmark-runner and, on the other hand, further optimize RSP4J, e.g.,
by introducing algorithmic optimizations on its operators. In addition, it is worth
supplementing this comparison with other engines, especially from the EP area,
and building a standardized database for benchmarking results of SR engines.
More generally, it is certainly useful to test other programming languages than
Java in the context of SR engines. Last but not least, the incompleteness of SR
engines endangers their use in real-world applications. There is an urgent need
to explore theoretically and in practice how the completeness and reliability of
SR engines can be raised. If an SR engine drops input to prevent an overload,
for instance, it will be crucial to investigate how priorities can be assigned to
certain inputs or how the dropping of input can be realized in a way that affects
the query results as little as possible and, ideally, in a quantifiable manner.
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formances of c-sparql and cqels. arXiv preprint arXiv:1611.08269 (2016)

21. Scharrenbach, T., Urbani, J., Margara, A., Della Valle, E., Bernstein, A.: Seven
commandments for benchmarking semantic flow processing systems. In: Extended
Semantic Web Conference. pp. 305–319. Springer (2013)

22. Su, X., Gilman, E., Wetz, P., Riekki, J., Zuo, Y., Leppänen, T.: Stream
reasoning for the internet of things: Challenges and gap analysis. In: Pro-
ceedings of the 6th International Conference on Web Intelligence, Mining
and Semantics. WIMS ’16, Association for Computing Machinery, New York,
NY, USA (2016). https://doi.org/10.1145/2912845.2912853, https://doi.org/

10.1145/2912845.2912853

23. Tommasini, R., Bonte, P., Ongenae, F., Della Valle, E.: Rsp4j: An api for rdf stream
processing. In: Verborgh, R., Hose, K., Paulheim, H., Champin, P.A., Maleshkova,
M., Corcho, O., Ristoski, P., Alam, M. (eds.) The Semantic Web. pp. 565–581.
Springer International Publishing, Cham (2021)

24. Tommasini, R., Della Valle, E.: Yasper 1.0: Towards an rsp-ql engine. In: Interna-
tional Semantic Web Conference (Posters, Demos & Industry Tracks) (2017)

25. Tommasini, R., Della Valle, E., Balduini, M., Dell’Aglio, D.: Heaven: a frame-
work for systematic comparative research approach for rsp engines. In: European
Semantic Web Conference. pp. 250–265. Springer (2016)

26. Tommasini, R., Della Valle, E., Mauri, A., Brambilla, M.: Rsplab: Rdf stream
processing benchmarking made easy. In: International Semantic Web Conference.
pp. 202–209. Springer (2017)


