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Abstract. The Shapes Constraint Language (SHACL) is a W3C recom-
mendation which allows to represent constraints in RDF– shape graphs –,
and validate RDF data graphs against these constraints. A SHACL val-
idator produces a validation report whose result is false for a shape graph
as soon as there is at least one node in the RDF data graph that does not
conform to the shape. This Boolean result of the validation of an RDF
data graph against an RDF shape graph is not suitable for discovering
new high-potential shapes from the RDF data. In this paper, we propose
a probabilistic framework to accept shapes with a realistic proportion of
nodes in an RDF data graph that does not conform to it. Based on this
framework, we propose an extension of the SHACL validation report to
express a set of metrics including the generality and likelihood of shapes
and we define a method to test a shape as a hypothesis test. Finally, we
present the results of experiments conducted to validate a test RDF data
graph against a set of shapes.

Keywords: RDF · SHACL · Shape Testing · Data Validation · Proba-
bilistic Assessment

1 Introduction

The notable growth of the semantic Web has led to the emergence of new research
areas such as the quality of RDF data. SHACL is the language recommended
by the W3C to express patterns that RDF data must respect in order to ensure
the dataset consistency.

We observe that violations generated during a SHACL validation of a shape
are a significant factor. As soon as we observe at least one violation the shape is
inconsistent with the RDF data. Considering a large collaborative RDF dataset
with a massive and constant increase of RDF triples (e.g., DBPedia), we assume
that a large number of RDF data violations against a set of shapes seems in-
evitable due to incomplete and/or incorrect data. In practice, a more in-depth
investigation of the data seems necessary. An expert could develop a strategy
for updating the data or the shapes depending on the rate or the nature of the
violations. This problem has a direct impact on SHACL shape mining and limits
domain knowledge learning. We tackle the following research question:
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How to design a validation process considering physiological errors in
real-life data?

Our contribution addresses the problem by suggesting a framework based on
a probabilistic model to consider a rate of violations p assumed to be contained
in an RDF dataset. p represents the proportion of errors that RDF data contains.
We define a measure of likelihood to observe a given number of violations. We
assess a given RDF dataset against a set of shapes to verify the consistency of
the dataset considering a theoretical error rate.

This paper is organized as follows: In Section 2, we summarise the related
work and the positioning of our work. In Section 3 we present our probabilistic
model (3.1), our extension of the SHACL validation report model (3.2), and our
proposal of an extended shape validation process as a test of hypothesis (3.3).
We present the results of our experiments in Section 4. We conclude and discuss
further research in Section 5.

2 Related Work

Given that SHACL is a fairly new recommendation, dating from 2017 [13], its
interactions with other standards are subject to ongoing research. In particu-
lar, we find work on the interactions with inference rules [20], with OWL [2],
description logic reasoning [15] and Ontology Design Pattern [18]. Moreover, ex-
tensions regarding SHACL validation are emerging, e.g., a SHACL validation
engine based on the study of the connectivity of a given RDF graph and the
collection of data in this same graph [11]. The expressiveness and semantics of
SHACL is a rich subject in the literature [1, 15]: it highlights a semantics based
on SROIQ, one of the most expressive description logics.

The validation of RDF data with SHACL is a timely research question largely
addressed in the literature [3, 7, 9, 12, 14, 19]. All these works consider a standard
use of SHACL: an RDF dataset is valid against a shape if it verifies the expressed
constraints. Our approach extends the standardized SHACL validation process
to overcome its binary character by considering a possible acceptable violation
rate.

SHACL constraint generation [10, 22, 23] can be carried out in several ways,
some using data-based and statistical approaches, others based on ontologies [5].
The different approaches lead to different ways of tackling the validation of
these shapes: The statistical-based approach requires expert analysis to define
the consistency of a shape, while the ontology-based approach relies on the de-
scribed RDF Schema properties (rdfs:range; rdfs:domain; . . . ) to provide a
set of shapes based on this ontology, which can be validated if the quality of
the ontology is assured. Knowledge graph profiling [21] is an important issue
in order to induce constraints from large KGs [17]. The work presented in this
article is focused on RDF data validation against shapes and is in line with the
logic of providing expertise on the consistency of RDF data by considering the
inescapable errors that they may contain, against a set of shapes that may be
generated automatically or provided by an expert.
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3 A Probabilistic Framework for Shape Assessment

3.1 Probabilistic Model

In a real-life context, RDF datasets are imperfect, incomplete (in the sense that
expected data is missing) and containing errors of various natures. The qual-
ity control of RDF data and efficient data integration guaranteeing RDF data
consistency are use cases that can be tackled using SHACL. In another respect,
SHACL shapes mining from RDF data is a promising approach to learn domain
knowledge (domain constraints). Candidate SHACL shapes are those triggering
a few violations in the data, but this is directly correlated with the quality (error
rate, which, however, is unknown) of the RDF dataset considered.

We propose to extend the evaluation of RDF data against SHACL shapes
by considering a physiological theoretical error proportion p in real-life RDF
data. In this context, mathematical modeling of the SHACL evaluation process,
combined with an error proportion p, is based on a probabilistic model.

Definition 1. The cardinality (or support) of a shape s, υs, is the set of RDF
triples targeted by s and tested during the validation. We define its cardinality
as the reference cardinality: ||υs||.

The confirmations and violations of a shape s, respectively υ+s and υ−s ,
υ+s ∩ υ−s = ∅, are the disjoint sets that correspond, respectively, to the triples
that are consistent with s and those that violate s.

Remark 1. The sum of the number of confirmations and the number of violations
of a shape s equals to the total number of triples targeted by s:

υs = υ+s ∪ υ−s (1)

The modelling is based on the assessment process where we define a random
variable X which conceptualises a set of observations from the validation of a
shape s, i.e., a set of triples υs; each triple t ∈ υs can be either a confirmation,
t ∈ υ+s , or a violation, t ∈ υ−s .

Let us assume a single selection among υs for which we have two possible
values: 1 if υ1 ∈ υ−s , 0 otherwise. We conclude that a binomial distribution
models this probabilistic approach, with X ∼ B(n, p) where n = ||υs|| and p
corresponds to the unavoidable theoretical error proportion, i.e.X ∼ B(||υS ||, p).

Definition 2. Considering X as a random variable with the following binomial
distribution X ∼ B(n, p) and Ω = {0, 1, . . . , n}, the probability to obtain exactly
k success among n attempts is:

∀k ∈ Ω,P (X = k) =

(
n

k

)
· pk · (1− p)n−k (2)
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The likelihood measure Lk determines the plausibility of obtaining k viola-
tions, i.e. k = ||υ−S ||, under the hypothesis of following a binomial distribution.
The calculation is based on Formula 2 (see Definition 3).

Definition 3. The likelihood to observe a number of violations ||υ−S || among
the nodes concerned by a shape S, i.e. ||υS ||, considering X ∼ B(||υS ||, p) is

L||υ−
S ||

= P (X = ||υ−S ||) =
(
||υS ||
||υ−S ||

)
· p||υ

−
S || · (1− p)||υ

+
S ||. (3)

3.2 Extension of the SHACL Validation Report Model

We propose an enriched model of the SHACL validation report to express ad-
ditional information for each shape considered in the report. We defined an
extension to the SHACL Validation Report Vocabulary denoted by prefix psh.1
For each source shape considered in the validation of an RDF graph we generate
additional triples: property psh:summary links the validation report to a blank
node of type psh:ValidationSummary which is the subject of several properties
whose values are the result of the computation of various metrics relative to the
source shape.

The focus shape is the value of property psh:focusShape. It is the source
shape of the validation result further described in the validation summary.

The reference cardinality of a shape s ||υs|| is the value of property
psh:referenceCardinality (see Definition 1).

The numbers of confirmations and violations of a shape s, respectively
||υ+s || and ||υ−s ||, are the values of properties psh:numConfirmation and psh:num-
Violation.

The generality G(s) ∈ [0, 1] of a shape s measures the representativeness of s
considering the whole RDF graph υ:

G(s) =
||υs||
||υ||

. (4)

It is the value of property psh:generality.

The likelihood of a shape s in an RDF graph υ as defined in Section 3.1 is the
value of property psh:likelihood.

Figure 1 presents an excerpt of an example validation report where:

– the SHACL shape s1 is described by URI :s1;
– the cardinality of the RDF graph being validated is ||υ|| = 1000;
– the parameter of the binomial distribution is p = 0.1.

1 prefix psh: <http://ns.inria.fr/probabilistic-shacl/>
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[ a sh:ValidationReport ;
sh:conforms boolean ;
sh:result r ;
# Probabilistic SHACL extension
psh:summary [

a psh:ValidationSummary ;
psh:referenceCardinality ||υS || ;
psh:numConfirmation ||υ+

S || ;
psh:numViolation ||υ−S || ;
psh:generality G(S) ;
psh:likelihood L||υ−

S
|| ;

psh:focusShape S
] ;

] .

Fig. 1: Structure of the extended SHACL validation report.

3.3 Data Graph Validation Against a Shape as a Hypothesis Test

The decision-making process for a given shape S is based on the probabilistic
model proposed in Section 3.1, which is based on the hypothesis that a given
observation follows a binomial distribution, such that X ∼ B(||υS ||, p). However,
the question concerning the consistency of the model is relevant as it can lead
to incorrect conclusions. We propose an approach based on hypothesis testing
which highlights the consistency of our hypothesis and a methodology to validate
our shapes.

The acceptance of a SHACL Shape s considers the proportion of violations
for s, i.e p̂ =

||υ−
s ||

||υs|| . We suggest accepting the shape s as consistent with the
RDF data if the observed proportion is smaller than the theoretical violation
proportion:

p̂ ≤ p =⇒ KG |= s. (5)

In the case where the observed proportion is greater than the theoretical pro-
portion, we minimize the distance of this probability from the maximum values
of the mass function of the binomial distribution B(||υs||, p) by using hypothesis
testing. Figure 3 shows the proportion of the number of violations that we accept
compared to the number that we reject with our method.

The Null and Alternate Hypothesis are (respectively) H0: data follow the
given distribution, i.e. the frequency of observed violations p̂ =

||υ−
S ||

||υS || is in line
with the expected proportions of violations p and X ∼ B(||υS ||, p). Finally, H1

indicates that data do not follow the given distribution.
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@prefix sh: <http :// www.w3.org/ns/shacl#> .
@prefix psh: <http ://ns.inria.fr/probabilistic -shacl/> .
@prefix : <http :// www.example.com/myDataGraph#> .

# SHACL Standard
:v1 a sh:ValidationResult ;

sh:focusNode :n1 ;
[...]
sh:sourceShape :s1 .

:v2 a sh:ValidationResult ;
sh:focusNode :n2 ;
[...]
sh:sourceShape :s1 .

[...]

[ a sh:ValidationReport ;
sh:conforms false ;
sh:result :v1 ;
sh:result :v2 ;
[...]
# SHACL Extension
# shape s1
psh:summary [

a psh:ValidationSummary ;
psh:generality "0.2"^^ xsd:decimal ;
psh:numConfirmation 178 ;
psh:numViolation 22 ;
psh:likelihood "0.0806"^^ xsd:decimal ;
psh:referenceCardinality 200 ;
psh:focusShape :s1

] ;
] .

Fig. 2: Example of an extended SHACL validation report for a shape :s1 with
||υ|| = 1000 and p = 0.1.
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Fig. 3: Acceptance zone of shape s1, considering X ∼ B(||υs1 ||, p) where ||υs1 || =
200 and p = 0.1.

The testing for Goodness of Fit verifies the alignment of our observations
with a theoretical distribution: we define X2

s the test statistic for a shape s
which follows χ2

k−1,α assuming H0, i.e. X2
s ∼ χ2

k−1,α (a chi-square distribution
with k − 1 degrees of freedom and a level of significance 1 − α) if X2

s verifies
Definition 4. This test is performed at the α level defined at 5%. It considers k
the total number of groups, i.e. k = 2, ni the observed number of individuals
and Ti the theoretical number of individuals. The test statistic X2

s is defined by

X2
s =

k∑
i=1

(ni − Ti)2

Ti
∼ χ2

k−1;α. (6)

Remark 2. A shape s for which we observe very small support ||υs|| (let us say
||υs|| = 5) implies a proportion of violations and/or confirmations that are less
than 5. Thus, the hypothesis test cannot be applied because the sample is not
sufficiently representative of a Chi-square distribution (see Definition 4).

Definition 4. The testing for goodness of fit is applicable (Formula 6) if ∀i ∈
[1, k], Ti ≥ 5.

The critical region i.e. the rejection region of H0, is defined by the value
χ2
k−1;α. Considering α = 0.05 and k = 2, we define the critical value: χ2

k−1;α =

χ2
1;α=0.05 = 3.84.

Remark 3. An alternative formula considers the acceptance interval Ia of a χ2

distribution, i.e. Ia = [0, χ2
k−1;α] which accept H0 if X2

s ∈ Ia.
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The acceptance of the null hypothesis , i.e., X ∼ B(||υs||, p), implies that
the value of our test statistic X2

s is not included in the rejection zone of the χ2
k=1

distribution, such that
X2
s ≤ χ2

k−1;α. (7)

The acceptance of H0 implies the acceptance of the considered shape s, i.e.,

X2
s ≤ χ2

k−1;α =⇒ KG |= s. (8)

Let us consider the case shown in Figure 2 as an example of an application.
We observe a proportion of violations that is slightly higher than expected, i.e.,

p̂ =
||υ−

s1
||

||υs1
|| = 0.11 and p̂ > p: an analysis through the hypothesis test determines

if this observation is inconsistent with the null hypothesis, and in which case we
would reject H0 and the shape :s1. We assume α = 5% to assess X2

s1 :

X2
s1 = (22−20)2

20 + (178−180)2
180 = 4

20 + 4
180 ≈ 0.222.

The statistical test demonstrated that X2
s1 ≤ χ2

1;α=0.05 (i.e. 3.84) and so X2
s1 ∈

Ia. We accept H0 and validate the adequacy of this hypothesis, i.e. the as-
sumption that our observations from the validation of :s1 follow a binomial
distribution X ∼ B(200, 0.1), with a level of significance of 1− α, i.e., 95%.

4 Experiments

These contributions lead to an extension of the validation report to cover the
generation of a degree of probability expressed under the hypothesis that the
samples follow a binomial distribution with a cardinality defined by the SHACL
shapes (i.e. ||υs||) and a probability p defined empirically corresponding to the
assumed proportion of violations that we accept from some RDF data. At the
same time, we investigate whether such an approach can capture the knowledge
domain in a larger way, i.e., a broader spectrum of accepted shapes for which
they are considered consistent despite the observed violations. Considering a
shape graph representative of an RDF dataset, the conclusion of an error rate p
for which it is reasonable to consider the acceptance of shapes on a subset of the
global dataset seems a relevant perspective for the evaluation of this work. This
implies a detailed analysis of the characteristics of the considered subset, the
proportions of accepted or rejected shapes and the impact of hypothesis testing
on acceptance.

4.1 Experimental Setup

Our experiments use the CovidOnTheWeb dataset2 [16] against a set of 377
shapes from a translation of the experimental results of Cadorel & al. [4]
which are considered as representative shapes of the whole CovidOnTheWeb
2 https://github.com/Wimmics/CovidOnTheWeb
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dataset. We run the probabilistic SHACL validation engine (see Section 3.2) im-
plemented in the Corese semantic web factory. We will conduct an analysis of
the theoretical error rate in order to find an optimal rate: we assume the values
of p empirically such that p ∈ {0.05, 0.1, 0.15, . . . , 0.95, 1}, which gives 20 values
for p to be tested. The experiments were performed on a Dell Precision 3561
equipped with an Intel(R) 11th Gen Core i7-11850H processor, with 32 GB of
RAM running under the Fedora Linux 35 operating system. The source code is
available in a public repository.3

CovidOnTheWeb is an RDF knowledge graphs produced from COVID-19
Open Research Dataset (CORD-19). It targets articles, described by URIs and
named entities identified in these articles, disambiguated by Entity-Fishing
and linked to Wikidata entities. Figure 4 shows an excerpt of RDF description
in CovidOnTheWeb in turtle format and Table 1 shows the characteristics of
the RDF dataset. We consider a subset containing approximately 18.79% of the
articles and 0.01% of the named entities.

Table 1: Summary of the CovidOnTheWeb RDF subgraph considered for the
experiment.

#RDF triples 226,647
#distinct articles 20,912
#distinct named entities 6,331
avg. #named entities per article 10.52

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .
@prefix rdfs: <http :// www.w3.org /2000/01/ rdf -schema#> .
@prefix covid: <http ://ns.inria.fr/covid19/> .
@prefix entity: <http ://www.wikidata.org/entity/> .

covid:ec1 [...]2c5 rdf:type entity:Q4407 .
covid:fff [...]86d rdf:type entity:Q10876 .
[...]
entity:Q4407 rdfs:label "methyl"@en .
entity:Q10876 rdfs:label "bacteria"@en .

Fig. 4: Example of RDF data extracted from CovidOnTheWeb.

3 https://github.com/RemiFELIN/RDFMining/tree/eswc_2023
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The candidate shapes describe association rules obtained by Cadorel & al. [4]
from a subset of the CovidOnTheWeb dataset. These rules are not necessarily
perfect, so we are interested in using them in our probabilistic approach. From
the experimental results of Cadorel & al., we extracted the named entities corre-
sponding to the antecedents and the consequents of these association rules. We
have carried out a treatment allowing the conversion of these rules into SHACL
shapes. We target articles belonging to a named entity, representing the an-
tecedent, with the property sh:targetClass. Among the articles considered, we
are interested in determining the affiliation to another named entity, represent-
ing the consequent : we use a constraint applied on the articles’ type and target
a named entity with the property sh:hasValue. In this context, a violation will
invoke a violation of type sh:HasValueConstraintComponent for the current
shape. An example of a shape formed after treatment is shown in Figure 5.

@prefix : <http :// www.example.com/myDataGraph#> .
@prefix sh: <http :// www.w3.org/ns/shacl#> .
@prefix entity: <http ://www.wikidata.org/entity/> .

:1 a sh:NodeShape ;
sh:targetClass entity:Q10295810 ;
sh:property [

sh:path rdf:type ;
sh:hasValue entity:Q43656 ;

] .

Fig. 5: Example SHACL shape representing an association rule with
entity:Q10295810 ("hypocholesterolemia"@en) as an antecedent and
entity:Q43656 ("cholesterol"@en) as a consequent.

4.2 Results

Table 2 shows the first experimental results, notably the generality score which
is relatively low, indicating a low average cardinality compared to the number
of total triples in our dataset: approximately 106 RDF triples on average are
targeted by our shapes (0.047% of the RDF triples). The rate of violations is
relatively high but is nuanced by the rate of confirmations (33.19%). It highlights
the interest in a probabilistic approach in order to check the consistency of
our RDF dataset against the shape graph considering varying p error rates and
understand how we can consider a reasonable error rate and a consistent number
of valid shapes.

Figure 6a shows an increasing evolution of the likelihood measure up to the
value p = 0.5 and then a decrease. It appears that the most reasonable error
rate is 50%, as it maximises the mean likelihood value (0.0362%).
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Table 2: Summary of the SHACL shape graph considered in the experiment.
#named entities represented 337 (5.32% )
avg. reference cardinality 106.69 (0.0470% )
avg. #confirmations 33.19 (31.11% )
avg. #violations 73.50 (70.89% )
avg. generality G(S) (Formula 4) 0.0005%

(a) L||υ−
S
|| average (b) X2

S average

Fig. 6: Average value of (a) likelihood measures and (b) statistic test as functions
of the theoretical error proportion p.

Figure 7 presents the set of decisions made on shapes (acceptance, rejection)
as a function of the theoretical error proportion p and clearly shows the im-
portance of hypothesis testing. The number of tests performed increases until
p = 0.3 and then decreases. Similarly, hypothesis testing tends to reject shapes
for “small” values of p and the trend reverses as p increases: the number of
accepted shapes increases and the value of the test statistic decreases (see Fig-
ure 6b). Further analysis of the results obtained with p = 0.5 shows that 63
shapes among the 187 accepted shapes are accepted after performing a hypoth-
esis test, i.e. 33.7% of the accepted shapes. These same tests accepted 25.7% of
the shapes that were tested, which shows its ability to efficiently filter with a
risk of α = 0.05 or 5% of being incorrect.

The production of the results in HTML format was performed with a STTL
transformation [6]. STTL is an extension to the SPARQL query language to
transform RDF in any template-specified text result format, which is populated
with the results of a SPARQL query. In our case, we provided an HTML template
including the desired values in its structure. An excerpt of 20 out of 377 results
obtained for a theoretical error proportion of p = 0.5 is presented in Figure 8.

We compared the computation time of our proposed probabilistic validation
framework with that of standard validation. For our base of 377 shapes and our
extract of CovidOnTheWeb (226,647 triples), we observed an overall computa-
tion time of 1 minute 35 seconds for the probabilistic validation framework
against 1 minute 29 seconds for standard validation: the probabilistic frame-
work takes 6,31% more time than standard validation and it is linear which
makes it practical and scalable.
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Fig. 7: Shapes acceptance as a function of the theoretical error proportion p
(HT= Hypothesis Testing).

Fig. 8: SHACL validation report in HTML format for p = 0.5.
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5 Conclusion

In this article, we propose a probabilistic framework for SHACL validation, thus
contributing to RDF data quality control. We extend the SHACL validation
report to express the likelihood measure for the number of violations observed
and we propose a decision model for a probabilistic acceptance of RDF triples
against SHACL shapes. Our experiments show the capabilities of our approach
to validate a real-world RDF dataset against a set of SHACL shapes while ac-
cepting a reasonable error rate p. As future work, we plan to extend our proposed
framework to complex shapes, especially recursive shapes which are the focus of
ongoing research [3, 8, 19]. We also plan to investigate the automatic extraction
or generation of SHACL shapes from reference RDF datasets, to capture domain
knowledge as constraints.
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