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Abstract. Based on a real world use case, we developed and evaluated
a hybrid AI system that aims to extract key elements from legal permits
by combining methods from the Semantic Web and Machine Learning.
Specifically, we modelled the available background knowledge in a cus-
tom Knowledge Graph, which we exploited together with the usage of
different language- and text-embedding-models in order to extract dif-
ferent information from official Austrian permits, including the Issuing
Authority, the Operator of the facility in question, the Reference Num-
ber, and the Issuing Date. Additionally, we implemented mechanisms
to capture automatically auditable traces of the system to ensure the
transparency of the processes. Our quantitative evaluation showed over-
all promising results, while the in-depth qualitative analysis revealed
concrete error types, providing guidance on how to improve the current
prototype.

Keywords: legal permits · information extraction · semantic web · ma-
chine learning · auditability

1 Introduction

Given its manifold and distributed nature combined with a large number of
associated exceptions and exemptions, the legal domain can be considered one
of the most complex areas. In addition, most of the knowledge is stored (e.g.,
in laws) and distributed (e.g., in permits) in unstructured, textual form, that
makes use of highly convoluted and composite language. In order to facilitate the
searchability and processability of such legal documents, specific key elements –
representing the most important actors and aspects of the document – are added
as metadata. If not added at creation time of the document, these key elements
need to be extracted manually in a later point in time. Due to the high cost of
jurists, this extraction is often performed by laypersons for whom this task can
be demanding and resource-intense.

In this work, we introduce a system that aims at assisting laypersons in their
task of extracting key elements from official permits. For doing so, we collect re-
quirements from and perform an evaluation along a real-world use case situated
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in Austria. Specifically, we build a hybrid AI system, which combines methods
from Machine Learning and Semantic Web technologies to provide suggestions
for specific key elements, while providing auditable traces of the extraction pro-
cedure, which increase the transparency of the system.

The rest of the paper is structured as follows. Section 2 describes the use
case and the associated requirements in more detail, while Section 3 introduces
the developed system. Section 4 explains methods and evaluation setup, results
of our quantitative and qualitative analysis are shown in Section 5. Finally, we
report our conclusions and future work in Section 6.

2 The Use Case

The use case concerns the operation of an electronic permit management system
(EPMS) which facilitates the organisational and bureaucratic processes around
official permits in Austria, including application, decision, and amendments,
as it provides a common platform for all involved stakeholders. Alongside the
digitized version of the permit document, the EPMS also provides a summary
of key elements characterizing the most important aspects of the permit.

The task of filling these structured summaries is currently conducted by data
management staff. However, as they are usually not specifically trained for this
highly complex exercise, the task completion requires a lot of efforts and can end
in poor data quality. Therefore, our goal is to provide a system that supports
the administrators for extracting information by providing suggestions for the
key elements that need to be extracted.

Specifically, for this use case, we are focusing on the following key elements
(cf. Figure 1): (1) the Operator of the installation a permit is targeting, (this
could either be a legal or natural person), (2) the Issuing Authority in charge
of the content of the permit, (3) the Reference Number of the permit, being its
unique identifier, and (4) the Issuing Date. Along these key elements, which are
mentioned in the permit content, we are further interested in extracting addi-
tional meta-information concerning the Permit Types including (5) the Object
Type describing whom the permit is for (e.g., for an Installation Site), (6) the
Processing Type describing the type of request and outcome of the permit (e.g.,
application, amendment, withdrawal), and (7) the Procedure Type describing the
legal procedure under which the permit was issued (e.g., simplified procedure).

Requirements: Different requirements arise from the presented use case.
First, the extracted key elements should be matched to pre-defined entities to
ensure data quality. Second, the system must be able incorporate symbolic ex-
pert knowledge. Specifically, expert-created mappings of legal regulations to the
different Permit Types should be exploitable by the system. Finally, to ensure
the transparency of the provided suggestions and thus the acceptance of the
users, auditability capabilities to conduct regular internal audits for error detec-
tion of past system executions should be included in the system. To this end the
following audit requirements should be fulfilled: (A1) availability of audit traces
logging complete system executions, (A2) automation of audit trace collection,
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Fig. 1: Example of a structured summary of permit key elements.

transformation and management and (A3) the capability and ease of use to ask
and answer to audit questions based on stakeholder input.

3 The System

The implemented solution consists of three main components, being (1) a knowl-
edge graph (KG) containing the background knowledge and corresponding enti-
ties, (2) the Key Element Extraction Module, comprising of a main pipeline that
orchestrates a set of extraction services, and (3) the AuditBox, responsible for
collecting and providing audit traces of the system. To facilitate the accessibility
of the developed system, a simple web interface was added through which user
interaction can take place. An overview over the system is shown in Figure 2.
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Fig. 2: Overview over the developed Auditable Key Element Extraction System
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3.1 Knowledge Graph

We developed a knowledge graph (KG) as a central component to store and pro-
vide information both about the involved entities (e.g., legal persons) as well as
background knowledge about these entities (e.g., associations of legal regulations
to Permit Types) within legal permits.

To build such a KG, we first identified relevant datasets. For this use case, we
collected (i) a geo-location dataset structured according to Geonames ontology4,
(ii) a legal person dataset, representing our operator entities, (iii) authorities
dataset, (iv) regulations dataset structuring relevant Austrian law, and (v) the
Permit Types dataset mapping the regulations to the different types. Afterwards,
we develop an ontology which described the data model of the data from these
datasets and the links between these data (e.g., the location of a legal person from
legal person databases should be in the location registered in the geo-location
dataset). The ontology is summarized in Figure 3 and online available5. With the
ontology in place, we transformed the source data into its KG representation, by
integrating the transformed data from individual data sources in a triplestore.
Finally, we enriched the generated KG with additional information, e.g., SKOS
hierarchies based on the inputs from domain experts.

Fig. 3: Overview of the ontology classes for legal permit extraction. We modelled
the class Location as a subclass of GeoNames Feature.

4 http://www.geonames.org/ontology/documentation.html
5 The link to the online version will be made available upon acceptance
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3.2 Key Element Extraction Module

The Key Element Extraction Module of the developed system follows the paradigm
of a microservice architecture, where the module is structured as a collection of
decoupled services. Each microservice can be developed and deployed indepen-
dently, providing flexibility on using different programming languages for their
implementation. Microservices are by design minimal and autonomous, in con-
trast to monolithic integrated systems, thus can be developed more efficiently
[12]. Furthermore, deployment can be automated to a large extent, making the
solution easy to scale based on demand.

Main Pipeline The use of a microservice architecture mandates the use of a
management tool in order to orchestrate the execution of the different services
and steps needed to accomplish more complex tasks. To this end, we used Uni-
fiedViews ETL6[6] – an Extract-Transform-Load (ETL) framework and platform
that allows users to define, execute, monitor, debug, schedule, and share data
processing tasks as a pipeline – as it has the advantage of natively supporting
the processing of RDF data. There, we defined a main pipeline which orches-
trates the processing step needed to perform 1) the parsing and pre-processing
of the legal document, 2) the execution of the extraction services, and 3) a num-
ber of post-processing steps needed to produce the final outcome of the main
pipeline. Additionally, for each extraction service, we define a secondary anno-
tation pipeline, in order to decouple configuration needs of each service from the
main pipeline and enable parallel execution of the services. Fault tolerance is
achieved through this design, as in case an error occurs on any of the extraction
services, the main pipeline will continue to process.

By design, all extraction services use the NIF ontology as I/O format (see
below). We developed a Data Processing Unit (DPU), a pluggable processing
component for UnifiedViews, with the task to parse a document in PDF format
and convert it into NIF. The DPU uses the DKPro-core Library [2] to achieve
the conversion. Then, the NIF document is sent to next DPU in the pipeline,
which triggers the secondary pipeline for each of the extraction services. Upon
completion of all secondary pipelines, a set of post-processing steps is executed.
First, the results are merged, then we filter the annotation units produced by
the annotation services based on a confidence threshold. Finally, we serialize the
results in JSON, by utilizing JSON-LD framing [9]. Thus the final results can
be presented on the user interface of the system.

The NLP Interchange Format The NLP Interchange Format (NIF) [5] is an
RDF/OWL-based format that aims to achieve interoperability between Natural
Language Processing (NLP) tools, language resources and annotations. The NIF
2.0 Core Ontology7 provides classes and properties to describe the relations

6 https://www.poolparty.biz/agile-data-integration/
7 http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#
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between substrings, text, documents by assigning URIs to strings. These URIs
can then be used as subjects in RDF triples and therefore enable easy annotation.

In the course of the presented use case, NIF 2.18 is used as the base data
model for all annotation services. Each service should be able to parse NIF data
as input for process. Additionally, output of each annotation service is expected
as NIF. Thus, interoperability between all annotation services of the developed
system is achieved through the NIF data model. Through the extensive usage of
nif:AnnotationUnit, results from each service can be merged effortless to produce
the final results of the annotation pipelines. Moreover, the use of provenance
metadata on each of nif:AnnotationUnit ensures the auditability of the results
produced by the annotation pipelines. An example of the output of an annotation
service is shown in Listing 1.1.

@prefix nif:
<http :// persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#> .

@prefix alkees-nif: <https :// alkees.org/ontology/nif-alkees#> .
@prefix its-rdf: <http :// www.w3.org /2005/11/ its/rdf#> .
@prefix alkees-permit: <https :// w3id.org/alkees/ns/permit#> .
@prefix alkees-authority: <http :// w3id.org/alkees/id/authority/> .
@prefix alkees-service: <http :// alkees.org/ns/service/>

<file :/// data/CONTENT17_71708645.pdf#offset_0_9672 >
a nif:Context , nif:OffsetBasedString , nif:String ;
nif:beginIndex 0;
nif:endIndex 9672;
nif:isString "Lots of text ...";
alkees-nif:annotations

<file :/// data/CONTENT17_71708645.pdf#offset_177_223 > .

<file :/// data/CONTENT17_71708645.pdf#offset_177_223 >
a alkees-nif:MatchedResourceOccurrence , nif:Annotation ,

nif:OffsetBasedString;
nif:beginIndex 177;
nif:endIndex 223;
nif:referenceContext <file :/// data/CONTENT17_71708645.pdf#offset_0_9672 > ;
nif:anchorOf "Bezirkshauptmannschaft Baden";
nif:annotationUnit [ a nif:AnnotationUnit;

its-rdf:taAnnotatorRef
alkees-service:pp-concept-extraction-annotator-v1;

its-rdf:taClassRef alkees-permit:ConceptAnnotation;
its-rdf:taConfidence 1.0E0;
its-rdf:taIdentRef alkees-authority :308 .

] .

Listing 1.1: Example NIF output of an annotation service.

Extraction Services In total, we developed four microservices to extract the
five types of key elements, which we describe below in more detail. The commu-
nication of the services is based on well defined REST interfaces, simplifying the
communication and allowing decoupling the client from the server.

Date Extraction: There is a variety of tools and libraries available that tar-
get the recognition and parsing of dates from textual data. After analyzing a

8 Please note, that version 2.1 has not yet officially been released yet, but is the latest
develop branch of the ontology
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selection of these libraries, (including dateutil9, dateparser10, and datefinder11)
we decided for heideltime12 as it provided the best range of functions and per-
formance for the intended use case. This Java tool developed by Heidelberg
University supports a wide variety of languages and date formats, captures the
type of annotation (full date, relative date, ...), and directly annotates these
mentions within the text. This gives the advantage of being able to easily filter
out irrelevant dates, e.g., for our use case, where the goal is to extract the issuing
date of the legal permit, we would only take into consideration full dates.

Reference Number Extraction For extracting the reference numbers, we chose a
two step-approach, being (1) candidate identification and (2) classification.

First, candidates are identified based on a set of RegEx patterns. Specifically,
for the presented use case, we used a recall-optimized pattern to collect candi-
dates, which we further refined by automatically filtering out groups of false
positives such as all-caps words, or gendered terms (containing a ”Binnen-I”)
with corresponding patterns to improve the quality.

In the second step, the reference number candidates are ingested into a string
classifier. We decided for a 1-dimensional-CNN-based architecture to generate
character embeddings for the candidates, which are then further fed into a binary
classification layer.

Legal Info Extraction For mapping the legal documents to the Permit Types,
we chose a two-step approach: (1) we extracted and normalized the mentions of
laws from the text, and then (2) mapped these mentions to the specific types.

Unfortunately, existing legal annotation tools (e.g., [14]) did not show suf-
ficient quality in preliminary experiments. Therefore, we decided to develop
our own reference parsing tool based on a context-free grammar. The basis for
the grammar is different legislature elements such as article, paragraph, sub-
paragraph, point, and sentence. These elements were organized in a transitive
hierarchical way, so that different levels can be skipped to still form a valid
overall mention. We also included known separators including commas, but also
phrases such as ”as well as”, or ”in combination with”.

To automatically map the annotated and normalized legislature mentions to
the different Permit Types, we queried the corresponding information provided
in the KG.

Named Entity Role Extraction We chose a two-step approach to extract the
Operator and Issuing Authority from a legal permit: (1) we annotated all known
entities in the text as candidates, and then (2) classified the candidates whether
or not they appear in the role of interest.

9 https://github.com/dateutil/dateutil
10 https://github.com/scrapinghub/dateparser
11 https://github.com/akoumjian/datefinder
12 https://github.com/HeidelTime/heideltime
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In order to annotate the entity candidates, we used PoolParty Extractor13 to
identify all mentions of concepts from the relevant sub-branch of the taxonomy
from our KG. For being able to also identify surface forms that are unknown to
the KG, we further deployed a BERT-based Named Entity Recognition (NER)
model (bert-base-german-cased model with token classification head) which
we fine-tuned on a German Legal NER dataset [7]. The candidates are then
matched to their corresponding entity in the KG, using a fuzzy-string matching
algorithm based on n-gram tf-idf-scores, with a empirically determined negative
dot product cutoff of -0.8.

The extracted candidates are then used as fine-tuning examples for a disam-
biguation classifier, which decides whether the concept is used in the target role
or not. The classifier consists of a bert-base-german-casedmodel with a binary
classification layer. Specifically, the task of role disambiguation is re-formulated
in as Target Sense Verification task [1], so that –given a context containing the
target entity, as well as a label and definition of the target role– the task is to
decide whether the entity in the context is used in the target role or not. This
task formulation leads to flexibility regarding the target roles, but also allows to
show ambiguities, e.g., when an entity embodies multiple roles in one sentence.

Finally, to overcome the problem of deprecated names used in the permits
due to e.g., re-branding of companies, we automatically extracted the installation
sites from the permits using RegEx queries parsing the real-estate numbers and
used them to retrieve corresponding operators by querying the KG.

3.3 AuditBox

AuditBox offers a flexible and adaptable implementation to collect and trans-
form audit traces from heterogeneous sources into a unified representation. This
representation is built upon a workflow model in RDF-format which defines main
activities with relevant in- and outputs (e.g. file uploads, suggestions for key el-
ements etc.) and their data sources (e.g. extraction services, user interface). For
our use case, traces are collected for each system execution ranging from permit
upload to users, permit transformation, information extraction and users being
able to correct extracted key elements.

Core components of the AuditBox include:
Audit Collection supports the automatic generation of endpoints (APIs)

where traces from different sources and applications can be sent to. AuditBox
collectors are REST APIs allowing a flexible and standardised coupling of ser-
vices. A custom service ontology aides their automatic generation.

Audit Transformation: is responsible for the integration of the heterogeneous
audit traces. A set of RML mappings is used to transform data from different
sources into RDF format aligned to the workflow model. The transformed data
is stored in a graph-based repository, for which we use GraphDB.

Audit Management supports the querying of transformed data from the
repository and provides pre-defined queries for users without SPARQL expertise.

13 https://www.poolparty.biz/poolparty-extractor



Combining SW and ML for Auditable Legal Key Element Extraction 9

Non-functional (security) capabilities include: User authentication and au-
thorization to ensure that only authorized entities can send audit traces and
query the stored data.

4 Methods

4.1 Evaluation Setup of Extraction Performance

The basis for this use case were 4612 historic permits that had been entered
and annotated in the EPMS system. For evaluation purposes, we reserved 777
permits which were not used in the training of the models. For each of these
permits, we performed the extraction of the relevant key elements, using the
meta-data from EPMS as silver labels to compare against. As all services – with
exception to the Legal Info Extraction – provide a confidence-sorted list of the
extracted entities, we chose hits@k as an appropriate evaluation metric, i.e., the
proportion of times the correct instance was within the top k ranked predictions.
We chose k to be in {1, 3, all}.

For the extracted Reference Number, we decided to perform a two evaluation
settings. a While the strict setting required an exact string match, the lenient
setting allowed sub-string matches. Finally, for errors that occur in services with
a two-step approach, we analyse whether the correct annotation was in the can-
didates or not, indicating if the error occurred in the candidate annotation step,
or in the classification step.

4.2 Training of ML models

While the Date and Legal Info Extraction services only require configuration, the
models behind Reference Number and Named Entity Roles Extraction need to
go through a training phase before they can be applied to the presented use case.
As the legal permits provided for training only consisted of the documents them-
selves and their associated labels, but no annotations, we created the training
data in an distant supervised fashion, where we used the corresponding candi-
date creation modules of the services to create the instances, and annotated all
instances that target the correct entity as true, while others as false. Finally, we
balanced the created instance sets to contain an equal number of positive and
negative examples, and split into training and validation. It shall be noted that
the outcomes of this procedure can contain noisy instances, as a context contain-
ing the target might be using this entity in a completely different role, but still
serve as a positive example. However, we assumed that these noisy instances are
mitigated during the training process.

For the CNN-based classifier, we were able to generate over 30.000 training
instances. After 10 epochs of training, the model was able to reach an accuracy
of 98%, and F1 score of 92% (precision of 94%, recall of 90%) on the validation
set. For the BERT-based classifier, due to hardware restrictions (Intel Xeon CPU
E5-2640, 6x, 2.5GHz) and the size of the model, we only used a training-set of
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2000 instances and a validation set of 500 instances to optimize the model. After
10 epochs, the model achieved an accuracy and F1 of 94%, (precision of 91%,
recall of 97%) on the validation data.

4.3 Evaluation Setup of Auditability

Several methods were proposed to scope the context information to be collected
for a given system and environment: A generic provenance-focused methodology
e.g., [10], more specialised approaches for AI-supported systems, such as from
an accountability perspective e.g. [13], or artefact-focused e.g., [15]. However,
they do not focus on automatic collection and management of such context
information. To this end, we adapted and refined the method presented in [4].
The three main phases are (cf. Figure 4):

During the Scoping Phase, goal and aims of the audit are defined to identify
main activities and entities to be included in the workflow. In the Preparation
Phase, the workflow model and mappings to transform collected traces are cre-
ated, to support the automatic management of audit traces. These two outputs
are also needed to orchestrate the AuditBox. The Execution Phase is concerned
with the execution of audits: audit traces are automatically collected and sent
to the generated endpoints by the AuditBox. The traces are then transformed
according to the mappings and stored in a graph-based format. Audit questions
can be answered in the form of SPARQL queries prepared in the AuditBox or
also by writing custom ones.

Scoping Preparation Execution

influences

influences

Audit aims & scope
Workflow model

transformed  
according to Mappings

queriesAudit queriesmapped toAudit questions

Transformed audit traces

results in 

described in

sent to

Data from multiple sources

influencesSystem architecture to generateAcquisition configurations Collector endpoints

Fig. 4: Auditability method

Such audit questions (and the requirements from Section 2) form the main
basis for our evaluation. Similar to the scenario-based and question-driven ap-
proaches to achieve explainable AI [3, 8], we collected a set of audit questions
(similar to competency questions) from relevant stakeholders involved in the op-
eration of the EPMS to guide the audit scope. The structure of such a question:

As a <stakeholder>, I want <some goal>so that <some reason>.
One concrete example:

As a technical support staff, I want to know which suggestions of metadata
has been corrected by a user so that either the system can ideally learn from
errors or areas for enhancement can be detected.
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5 Results

5.1 Quantitative Analysis

The results from the quantitative analysis are summarized in Table 1. The ex-
traction of the Issuing Date is the most successful across all key elements and
yielded in 79% of the cases the correct result on the first rank of the suggestions,
while the consideration of later ranks would not bring too much benefit to the
overall performance. In contrast, for other ranked key elements, a longer list of
suggestions would result in an increased recall of the correct entity.

The Reference Number Extraction Service, despite the good performance on
the training examples, was only able to achieve hits@all of 0.76 for the lenient
and 0.55 for the strict setting. The performance difference in the two evaluation
settings is quite large, with a total of 165 cases where the extracted reference
number was only correct under the lenient scenario, indicating that the boundary
detection capabilities of the Reference Number Extraction Service can still be
improved. Another interesting insight is that if only incorrect reference numbers
are suggested, the probability that the correct one is annotated as a candidate
is much higher than compared to cases where no suggestions were provided.

For the key elements originating from the NE-Roles service, i.e., Issuing Au-
thority and Operator, we reach a performance of 0.62 and 0.77 hits@all rate,
respectively. Interestingly, the ranking for the extracted Operator suggestions
seems to be significantly worse than for the Issuing Authority, as the compar-
ison between the corresponding hits@3 and hits@all rates show. This could be
due to the fact that the number of operator candidates contained in a permit
is considerably larger than the number of authorities, therefore, the possibil-
ity for false positives is increased. For both Issuing Authority and Operator,
the vast majority of errors can be traced back to the failed annotation of the
corresponding candidate entities in the permit.

When analysing the extraction performance of the installation site in isola-
tion, we can see that the overall performance, while staying below 60%, is consid-
erably high in precision, as only 2% of the suggestions only contained incorrect
entities, and if the correct entity was with the suggestions, it was within the first
three ranks. However, in 40% of the cases, no suggestion for the installation site
was provided, indicating that the identification and parsing of the real-estate
number alone is not sufficient to reliably extract this kind of information.

The coverage of Permit Types that we were able to achieve with the tested
strategy of extracting and mapping law mentions was considerably low with
23%-39% for hits@all rate for the different types. In a large amount of cases, no
suggestion for the different types could be extracted. The model has produced
a maximum of 3 suggestions for Object Type and Processing Type, and a max-
imum of 6 suggestions for Procedure Type across all test permits. Interestingly,
the error rate, i.e., when only incorrect types were suggested, varies a lot among
the different types: 11% for Object Type to 30% for Processing Type. Conclud-
ing, it can be said that the hypothesis that the extraction of Permit Types could
be achieved by solely the parsing of law mentions could not be verified.
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Table 1: Extraction performance for the different key elements. For Reference
Number, we report both the performance for strict (extract string match) as
well as lenient (sub-string) evaluation. Incorrect denotes the percentage of cases,
where only incorrect suggestions were provided, while Nothing denotes the cases
where no suggestions were provided. For those key elements that are extracted in
a two-step approach, we report the percentage of cases where the correct entity
was not contained in the candidates in parenthesis.

Key Element hits@1 hits@3 hits@all Incorrect Nothing

Issuing Date 0.79 0.82 0.82 0.18 0.00

Ref. Number
(strict) 0.41 0.49 0.56 - -

(lenient) 0.56 0.67 0.77 0.10 (0.09) 0.12 (0.07)

Issuing Authority 0.51 0.63 0.65 0.09 (0.08) 0.25 (0.24)

Operator 0.47 0.59 0.77 0.14 (0.13) 0.08 (0.04)

Installation Site 0.51 0.57 0.57 0.02 0.40

Object Type - - 0.25 0.11 0.64
Processing Type - - 0.23 0.30 0.47
Procedure Type - - 0.39 0.19 0.42

5.2 Qualitative Analysis

To better understand the details of when the different services failed, we per-
formed a qualitative error analysis for the Reference Number, Issuing Authority,
and Operator.

One interesting aspect of the Reference Number outcomes is the rather large
performance difference of the strict and lenient evaluation setting. Analysing
the 165 cases where the lenient setting brings a positive and the strict setting
a negative hits@all result, we could find that in 65% of the cases, the matched
Reference Number extracted from the permit seemed to be an addendum to
the one entered into the EPMS system (e.g, RKU-2123987 vs RKU-2123987-v2).
Adding this addendum Reference Number to the original entry would probably
be of benefit regarding searchablility. In 14% of the cases, the Reference Number
entered into the EPMS could not be used directly to compare against, as they
were followed by a describing string Finally, in 21% of the cases, the extractor
indeed did not correctly identify the boundaries when extracting the Reference
Number. More specifically, the Reference Number followed by the a date was
extracted. This type of error could easily be mitigated by adjusting the candidate
annotation algorithm. In addition to the errors produced during the extraction
of the Reference Number, it is further noteworthy that the 9% and 7% of cases,
where the correct entity was not among the candidates for only incorrect and no
suggestions, respectively, way more than half of the times (i.e., 5% and 4%), this
could be traced back to the fact that the string entered as Reference Number
into the EPMS system was not present at all in the permit document.

For the key elements extracted by the NE-Roles Extraction service, we anal-
ysed why the correct entities were not among the candidates, since this scenario
is extremely common in cases of errors. Together with domain experts, we cat-
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Fig. 5: Analysis of NE-Roles Extraction errors when the correct entity is not
among the candidates.

egorised the different reasons into five different super classes: deficiencies in the
metadata stored in the EPMS (A), deficiencies in the data contained in the KG
(D), deficiencies contained in the permit itself (P), technical limitations of the
developed system (T), and cases where it is not clear why the extraction failed
(Other). Finally, we defined a sixth group (X) of errors, which we could identify,
but not properly evaluate as crucial background information was missing, e.g.,
when the EPMS metadata contained a completely different entity type than
mentioned in the permit.

For the Operator, over 40% of the cases of missing correct candidates could
be traced back to missing data in the KG. On the one hand, these were miss-
ing labels, especially when the Operator represented a natural person. On the
other hand, the current version of the KG lacked some deeper insight, e.g., the
renaming of companies.

Another fourth of the missed annotations could be attributed to the inaccu-
rate usage of entity names in the permits. For companies, the usage of the exact
wording is crucial to qualify their reference as correct, and therefore the permit as
valid. In about 14% of the analysed cases , the permit authors would use slightly
different wordings (e.g., Umweltservice vs Umwelt Service, Umwelt Service

vs Umwelt-Service, or & vs and) to refer to the operating company. In these
cases, despite the errors, it was rather obvious to the human which operator
the permit was attributed to. However, in another 12% of the cases, the naming
used in the permit diverged to a larger extent to the metadata annotated in the
EPMS. For these instances, certain aspects (like first or last names, or business
forms) are added, swapped, or removed from the registered company name. (e.g.
Johann Wurst GmbH vs Wurst Johann GmbH vs Wurst GmbH, or Wurst GmbH vs
Wurst BaugmbH vs Wurst AG). In these cases, it is hard to predict whether the
true origin of these differences, i.e., from incorrect citation, or incorrectly anno-
tated EPMS metadata. In a few cases, we could indeed verify that –despite the
large similarity of the company names– the entity stored in the EPMS was a
different from the one referred to in the permit.
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In 8.6% of the cases, the missing annotation originated from technical limi-
tations, e.g., when the entity was separated by a page break.

The reasons of missing candidate annotations for the Issuing Authority were
quite different and less diverse then for the Operator. First, we could not identify
any issues originating from deficiencies contained in the permit itself. Second,
most of the errors can be attributed to the incomplete mention of entities, for ex-
ample, the permit would only refer to the Governor instead of the Governor of

Lower Austria, with the corresponding county only being unidentifiable e.g., by
the address in the letter head. Additional data modelling or extraction strategies
would be needed to correctly process this distributed information. Interestingly,
the vast majority of errors that fall in this category are connected to the usage of
a single template by one Austrian state, meaning, that the targeted adaptation
to this type of permits could significantly increase the performance.

5.3 Auditability Analysis

We analyse our approach and report on lessons learned based on the audit re-
quirements (A1-A3) (cf. Section 2):

Completeness of audit trace capturing: We analyse completeness on two lev-
els: the use case level and the lifecycle level. For the concrete use case, the base-
line for completeness is the set of audit questions (cf. Section 4.3). These audit
questions were targeted with different SPARQL queries which can be divided
into two different types: overview queries provide general logging information of
past executions, including login, extraction, or error events. One example being
Listing 1.2 showcasing all metadata elements suggestions that were changed by
users. With this information specific executions can be inspected in further de-
tail for the model id, occurring errors etc. The second type being metric queries
calculating numeric summaries of past executions, e.g., the rate of successful
extractions over a specific time period. With this set of queries, we were able to
answer all audit questions of the stakeholders, resulting in the fulfilment of the
completeness requirement for this use case.

Analysing the completeness of the developed system in a broader context,
i.e., lifecycle view, we identified that the capturing of audit traces is focused
on the operation phase, while auditability aspects of the development phase are
partly neglected. Concretely, information about different ML model versions,
associated high-level characteristics and hyperparameter are already captured,
however, more detailed information (e.g. Model Cards [11] or data retrieved from
MLOPs tools such as Weights & Biases14 or MLflow15) are yet to be integrated.

Automatic Collection, Transformation and Management of Audit Traces:
This requirement is completely fulfilled through the usage of AuditBox. After an
initial set-up phase, all relevant information and traces are collected in a fully
automatic way, validated according to the defined workflow model and stored in
a graph format. Ability to access results and Ease of Use: In order to provide

14 https://wandb.ai/site
15 https://mlflow.org
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easy access to the audit results, we provided the SPARQL queries necessary to
answer the audit questions as a set of over 20 templates. However, for complex
queries and future work, a user interface to create custom audit dashboards
leaves room for improvement to also enable users without SPARQL expertise to
conduct regular audits with custom queries.

select ?uuid ?metadata_name ?metadata_extracted ?metadata_refined where {
?provenance rdf:type ep-plan:Bundle .
?provenance :uuid ?uuid .

?provenance ep-plan:hasTraceElement ?postProcessing .
?provenance ep-plan:hasTraceElement ?refineMetadata .
?postProcessing rdf:type :PostProcess .
?postProcessing prov:used ?metadata .
?metadata rdf:type ?metadata_name .
?metadata :value ?metadata_extracted .
?refineMetadata rdf:type :RefineMetadata .

?refinedMetadata rdf:type ?metadata_name .
?refinedMetadata prov:wasGeneratedBy ?refineMetadata .
?refinedMetadata :value ?metadata_refined .
FILTER(?metadata_name != prov:Entity && ?metadata_name != ep-plan:Entity

&& ?metadata_name != prov:Metadata && ?metadata_name != prov:Metadata)
}

Listing 1.2: Overview query on corrected suggestions by user

6 Conclusion and Outlook

The extraction of key elements from legal documents is a complex task which
is time-consuming and error-prone for non-trained experts. The heterogeneity
of permits in information and format make it complex on multiple levels. The
combination of symbolic and machine learning techniques for this use case allows
to leverage strengths of both approaches: the ability to extract data through
language and embedding models while incorporating background knowledge in
the form of a knowledge graph can improve the overall detection of entities.
Further improvements could be achieved by extending the ontology to e.g., cover
historic changes in entity types or the complete set of labels. Another area for
improvement could be expanding usable background knowledge in the form of
explicit rules for issuing authorities or for specific responsibilities.

The auditability of the described system is a key feature to increase the
user acceptance towards this AI-assisted solution approach. AuditBox, provides
a generic tool for collecting and managing audit traces from multiple sources.
Overall usability could be improved by providing a dashboard complementing
the query-based approach. Further work in extending the audit traces to other
system lifecycle phases (ML training) is planned.
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