
Prototyping an End-User User Interface for the
Solid Application Interoperability Specification

under GDPR

Hadrien Bailly1, Anoop Papanna1, and Rob Brennan2

1 Dublin City University, Glasnevin Campus, Dublin 9, Ireland.
{hadrien.bailly2, anoop.papanna2}@mail.dcu.ie

2 ADAPT, University College Dublin, Belfield, Dublin 4, Ireland.
rob.brennan@adaptcentre.ie

Abstract. This paper describes prototyping of the draft Solid applica-
tion interoperability specification (INTEROP). We developed and eval-
uated a dynamic user interface (UI) for the new Solid application access
request and authorization extended with the Data Privacy Vocabulary.
Solid places responsibility on users to control their data. INTEROP adds
new declarative access controls. Solid applications to date have provided
few policy interfaces with high usability. GDPR controls on usage are
rarely addressed. Implementation identified specification and Semantic
Web tool issues and also in the understandability of declarative policies,
a key concern under GDPR or data ethics best practices. The proto-
type was evaluated in a usability and task accuracy experiment, where
the UI enabled users to create access and usage control policies with an
accuracy of between 72 and 37%. Overall, the UI had a poor usability
rating, with a median SUS (system usability scale) score of 37.67. Ex-
perimental participants were classified according to the Westin privacy
scale to investigate the impact of user attitudes to privacy on the results.
The paper discusses the findings of the study and their consequences for
future data sovereignty access request and authorization UI designs.

Keywords: Solid · Access Control · User Interface · GDPR · Consent

1 Introduction

The Solid Platform was designed to address the loss of control over personal data
[30]: enabling users from all backgrounds to regain control over their personal
data and freely choose with whom to or not to share it. However, to date little
attention has been given to how users - and particularly non-power users - would
actually exert their control of access to their Solid Personal Online Datastore
(POD). Another deficit has been Solid’s use of Access Control List (ACL) poli-
cies to specify who can access which data [7], a process that is tedious and prone
to errors [1], and does not allow users to specify what usage of their data is al-
lowed – in spite of the fact that they are frequently unhappy with what happens
to their data after it was shared [24]. In 2022, the Solid Data Interoperability

1

Panel (INTEROP) proposed a new, more intuitive specification to represent ap-
plication access requests and user grants [2] with a more flexible policy model.
In parallel, the Data Privacy Vocabulary (DPV) [22] has emerged for describ-
ing data processing purposes based on the European General Data Protection
Regulation (GDPR). This legal exactness also comes with a potential cost in
usability for non-experts. The INTEROP specification and DPV ontology are
more expressive than Solid’s original ACL approach and create innovation pos-
sibilities, but it is still not obvious how end users will be able to understand and
manipulate their complex expressions.

This paper explores the following research question: “To what extent can an
access request and authorization UI effectively enable Solid users to specify IN-
TEROP access policies and DPV usage control policies?” It describes the design
and evaluation of a new application access request and authorization UI for end
users, based on first independent prototyping of the Solid Data Interoperability
Panel (INTEROP) specification [2] combined with the Data Privacy Vocabulary
(DPV) [22].

The contributions of the paper are as follows:

1. A new UI design for presenting Solid users with the access needs and intended
processing actions of an application requesting access to their POD using the
INTEROP specification;

2. A validation of the INTEROP specification through prototyping, resulting
in a set of identified design issues and improvement suggestions;

3. A new open source prototype UI implementation of the INTEROP specifi-
cation extended with the DPV, that generates fine-grained access and usage
control authorizations according to the INTEROP data shape format;

4. A user evaluation of the new UI usability and user satisfaction, based on
task completion accuracy, the System Usability Scale (SUS), Net Promoter
Score (NPS) and a profile of users using the Westin Privacy scale.

The paper is structured as follows: section 2 provides a motivating use case
and lists the UI requirements; Section 3 overviews related work in Solid access
and usage control and policy UI usability; Section 4 describes the UI design
and its implementation; Section 5 details the user experiment; Finally, section 6
describes conclusions.

2 Use Case & Requirements

This section illustrates the use of an application access request and authorization
UI with an example use case drawn from the INTEROP specification [2].

Alice is a Solid User: she owns a POD, in which she stores both professional
and personal data. Alice has several projects and tasks stored in her POD, and
has found the Projectron app to manage them. Alice has never authorized Pro-
jectron before, so when she starts the app, she is presented with the application
access request and authorization UI. First, Alice reviews Projectron’s access
needs, as defined by Projectron developers. These needs outline which (types

2

of) data Projectron needs to access, what operations it will perform, and for
what purpose, so Alice can understand what access she is asked to grant. Alice
inspects each need, and decides that she will allow Projectron access her POD as
described in the access request. She configures the scope of access for each need,
then approves the request: the UI automatically generates a set of authorizations
for Projectron. Projectron is now authorized. Later, when Projectron attempts
to perform an operation on data in Alice’s POD, the set of authorizations is
used by an authorization agent to check if Projectron 1) was authorized by Al-
ice; 2) is allowed to access that particular data in Alice’s POD, and perform
the requested operations on it; 3) has a purpose for performing the operation
agreed to by Alice in the authorizations. If the attempt passes all checks, it can
proceed, otherwise it is rejected.

This leads to these user and technical requirements for the application access
request and authorization UI:

R1 When an arbitrary collection of access requirements in INTEROP format
is present in a Solid request from an application, the UI shall graphically
present it to the user. It must precisely identify what data the application
requires and what operations it intends to conduct.

R2 The UI shall directly consume and produce Solid and RDF resources.
R3 The UI shall produce authorizations that can be used to allow/deny spec-

ified operations by a given application on any existing or future resource
located in the user’ POD.

R4 The UI shall enable users to “consent to the processing of their personal
data for one or more specific purposes” (EU General Data Protection Regu-

lation (GDPR), art. 6.) [21].
R5 The UI shall support users “deciding whether it makes sense for them to

share their personal data” [16], but avoid information overload.
R6 The UI shall be user-oriented [29], task-based [28], and enable users to

create accurate authorizations.

3 Related Work

This section briefly describes Solid, Solid access and usage control schemes, Solid
access control user interfaces, and usability evaluation techniques.

Solid & Usage and Access Control Solid aims to return data sovereignty to
web users [18]. It has two declared ambitions: 1) allow users to store data in a de-
centralized POD, and reuse it for multiple purposes (applications), 2) allow users
to share data from their POD securely with multiple service providers. Solid re-
lies on the Resource Description Framework (RDF), which enables third parties
to locate and interact with a user’s resources. Sharing resources requires that
their owners can protect it from unwanted or unauthorized access. The ability of
a data owner to authorize access and use of a resource has two dimensions: access
and usage control [27], where access denotes the authorization to read and edit

3

some resources, and usage the conditions and obligations associated with this
authorization. Traditionally, access control models encompass Mandatory Ac-
cess Control (MAC), Discretionary Access Control (DAC), Role-Based Access
Control (RBAC), and View-Based Access Control (VBAC) models. Additional
models have been proposed, the most notable being the Attribute-Based Access
Control (ABAC), and Context-Based Access Control (CBAC) models [15].

Simple access control models using access control lists (ACL) can take a
document-centric view of RDF that applies to groups of triples in a document.
More fine-grained controls use declarative constraint languages to describe what
a resource contains (or should contain). To that end, RDF systems can make
use of two constraint languages: SHACL3 and ShEx (Shape Expression)4, which
define the shape with which the graph of a given resource is expected to comply.
To describe complex sets of resources, multiple shapes can be assembled together
to form Shape Trees5. Shapes and shape trees can be used to scope access or
usage controls in the INTEROP specification.

Table 1: Access & Usage Control Protocols in Solid

Personal Data Sovereignty User experience
Protocol Model Access Usage GDPR UI Task-based

Web Access Control (WAC) [6] DAC ¥ q q ¥ [12] q

Access Control Policy (ACP) [3] CBAC ¥ ¥ q q q

Data Interoperability Panel Specification (INTEROP) [2] DAC ¥ q q ® ¥

eXtensible Access Control Markup Language (XACML) [26] ABAC ¥ q q q q

Open Data Rights Language (ODRL) [11] CBAC ¥ ¥ q q q

Open Regulatory Compliance Profile (ORCP) [14] CBAC ¥ ¥ ¥ q q

ODRL Profile for Access Control (OAC) [9] CBAC ¥ ¥ ¥ ¥SOPE [8] q

Currently, Solid resources are mainly secured using the DAC model and
ACLs. Table 1 summarises the main protocols that have been proposed for Solid.
Web Access Control (WAC) [6] is the current Solid standard. It uses ACL per-
mission files to define the operations that an application can execute on a given
resource. WAC offers only unrestricted read, write, append or control access to
a resource, or no access at all – context or usage restrictions can only be sup-
plied by the application. Access Control Policy (ACP) [3] was presented as an
alternative, using context and conditions to limit operations on resources beyond
binary access authorization. In the new INTEROP specification [2] rather than
controlling individual resources or resource containers, users dynamically create
policies for the needs of applications as a whole. When connecting with a new
application, users are presented with an access request outlining a set of access
needs for the application. Users can define either explicit authorizations to given
resources, or implicit ones to (existing or future) resources of a given data shape
and location. An authorization agent is then responsible for inferring effective
permissions for each resource in the POD. The access policies created under the

3 https://www.w3.org/TR/shacl/
4 https://shex.io/shex-semantics/index.html
5 https://shapetrees.org/TR/specification/

4

https://www.w3.org/TR/shacl/
https://shex.io/shex-semantics/index.html
https://shapetrees.org/TR/specification/

INTEROP specification do not include usage control. The Open Data Rights
Language (ODRL) Profile for Access Control (OAC) [9] aligns access and usage
permissions with the GDPR for Solid. It ensures usage control policies can be
written in compliance with the GDPR’s requirements using the Data Privacy
Vocabulary (DPV) [22].

Solid Access Control User Interfaces Solid users can only currently cre-
ate and manage WAC and OAC policies, using off-the-shelf file editors [12], and
summarized in Table 1. The INTEROP specification has not to date been imple-
mented in a user interface – although a wireframe design6 was presented. Off the
shelf editors are inappropriate to manage security: the policy editing workload
is often too heavy, even for simple tasks [5] and most users, even experts, fail
to recognize the implications of changes [1]. The design of Access Control UIs
must balance between the need for accurate information and the reluctance or
inability of users to process lengthy policies [19]. These UIs should be simple
and task-oriented, and not require previous knowledge of the underlying tech-
nical model [28]. The level of understanding of ACL permissions, and security
policies in general, is dependent on two factors: the technical knowledge of the
user and the design of the UI [10]. Solid aims to address all categories of users,
including members of the public. The access control UI design must reflect this.

Usability and Satisfaction Evaluation for Privacy Systems the System
Usability Scale (SUS) [4] is one of the most frequently used techniques to evaluate
usability. SUS is a 10-item questionnaire that generates a 0-100 score from each
participant. A system is considered above average usability if it scores above 68
for more than 50% of the participants. SUS does not identify causes of usability
problems. To detect these, software engineers can instead use the Nielsen’s 10
Design Heuristics and think-aloud [20]. This allows a limited number of evalua-
tors to consistently identify most of the issues in a UI.

User satisfaction is also important in the success of a system. The Net Pro-
moter Score (NPS) [25] is a tool frequently used to quickly evaluate the user
satisfaction. It consists of a single rating question, ranging from 1 to 10 and
asking whether a user is likely to recommend a product to family, colleague or
friend. If the respondents rate the UI under 7, then they are said to be detractors.
NPS can be followed by an open question to allow the respondents to elaborate.
The pertinence of the NPS alone as an accurate measure for user satisfaction is
debated [31], and it is advised to cross-check with other metrics and feedback.

Finally, it has been shown that the profile of users also plays a significant
role in their perceived user experience [17]. When it comes to sharing private
data, the popular Westin Scale defines three classes of users [16], which can be
uncovered with a short 5-item questionnaire: 1) 34% of users are fundamentalists.
They are concerned about their privacy, and proactively refuse to provide data;

6 https://github.com/solid/data-interoperability-panel/blob/main/
proposals/primer/images/authorization-screen.svg

5

https://github.com/solid/data-interoperability-panel/blob/main/proposals/primer/images/authorization-screen.svg
https://github.com/solid/data-interoperability-panel/blob/main/proposals/primer/images/authorization-screen.svg

2) 8% of users are unconcerned, least protective of their data and considering
that the benefits of sharing outweigh the risks of breach; 3) The remaining users
(58%) are pragmatic in their approach to privacy. They evaluate the pros and
cons, and share data if it makes sense to them.

In summary, Solid relies heavily on the personal control of data sharing,
yet the current access control protocols are coarse-grained and based on DAC
models that do not support application needs well (R2, R3). The INTEROP
specification aims to fix this with more expressive shape-based policies based on
application needs (R1, R5), but users are not currently supported by appro-
priate access control UIs (R1, R5, R6) and INTEROP will place even more
demands on them. In addition, GDPR-compliant usage control (R4) is not di-
rectly addressed.

4 A Proposed Application Access Request and
Authorization User Interface for INTEROP

This section describes the architecture, features and implementation of a new dy-
namic access control UI for INTEROP (figure 1). The UI prototyping discussed
identified gaps and two design issues in the draft INTEROP specification.

Fig. 1: Application Access Request and Authorization User Interface Architecture

4.1 Design

This UI was designed to meet the requirements in Section 2. It enables users to
review arbitrary access requests from applications (R1) to use RDF resources
(needs) (R2), and create INTEROP authorizations corresponding to the access
needs (R3). When presenting a request, the UI provides explicit information
about which resources are needed and for what GDPR-style purpose (R4), and
gives users the opportunity to grant or refuse access (R5).

To display the access request and create the authorization, the UI requires
input from two sources: 1) information about the content (registries) from the
user’s POD, and 2) the collection of access needs requested by an application.
As per INTEROP, the input is received in RDF, parsed, and validated against
ShEx shapes. When data has been received, an application access request UI

6

is dynamically generated from a template and presented to the user for review
(as show in Figure 1). The user can inspect the request, select/deselect optional
access needs, specify the extent (scope of) access, and decide whether to ac-
cept the request (R1,R5). If accepted, then the corresponding access and data
authorizations are generated according to the user specification, composed into
RDF triples and validated against ShEx, before being returned to the POD for
enforcement by the INTEROP authorization agent (R3).

The design combines the INTEROP specification and the DPV to provide
users with structured information about the application access request (R1,
R4). It uses the INTEROP definition of access needs to present the access re-
quirements of the application – in terms of type of resources accessed (shapes)
and technical ACL permissions. Then this is supplemented with DPV terminol-
ogy: first to describe the sensitivity of the data access and the purpose of use,
and second to record the purpose to which the users consent to (e.g. dpv:Service
Provision vs dpv:Analytics).

To discover what are the access needs of an application, and generate the
access request UI, it draws a directed tree containing all the access needs and de-
scriptions, starting from the application profile resource (interop:Application).
However, this is currently impeded by two INTEROP design choices: (1) the
use of collections and (2) several predicates incompatible with a directed tree
structure (backlinks). For instance, a description is linked to an access need using
the predicate AccessNeedDescription.hasAccessNeed, while no other node in the
graph possesses an IRI pointing to this description. As a result, to obtain the
description of an access need, one needs to 1) return to the parent access need
group, 2) retrieve the corresponding access description set and unnamed collec-
tion of descriptions, and 3) iterate over all access need descriptions resources
until one is found with a backlink hasAccessNeed to the need.

To overcome these issues, new predicates were introduced into the shape
expressions:

– accessNeed.hasAccessNeed to obtain the list of dependent access needs, and
– accessNeedGroup.hasAccessNeedGroupDescription and accessNeed.hasAccess-

NeedDescription to obtain the corresponding descriptions by language.

It was also detected that the INTEROP specification is inconsistent in its
use of the predicates skos:prefLabel and skos:definition to provide labels and
descriptions. Several shapes miss either a label, a description, or both – such as
SocialAgent or DataInstance. Other shapes use them inconsistently, e.g. between
AccessNeedDescription using prefLabel as label and AccessNeedGroupDescription

as definition. This does not prevent the creation of directed trees or presentation
of authorization requests, but it precludes the use of human-readable labels over
IRI in a dynamic user interface and violates ontology design best practices P20
[23]. New (skos) predicates were again introduced into the shape expressions of
a number of resources (cf. Table 2) to enforce the presence of these predicates
for access request UI generation.

Finally, we propose the following changes in the INTEROP specification: (1)
to alter the signification of the scope of access Inherited and (2) to include a

7

Table 2: INTEROP Concepts Missing Labels and Descriptions

Resource Has Label Has Description

Social Agent q q

Access Need Group* ¥ ¥

Access Need* q ¥

Data Registry q q

Data Instance q q

*resources using linked description

new scope Dependent. This new scope of access enables users to reuse – instead of
duplicate – the scope of access that has been selected in a similar access need. See
Table 3 and Listing 1 for a comprehensive description of the new scope Dependent
and revision of the existing scope Inherited, and Figure 2 for an example.

Table 3: Revised Scopes of Access

Scope of Access Dependency Inheritance

Keyword Dependent Inherited

Predicate hasAccessNeed inheritsFromNeed

Relationship

Links to access needs whose registered
shape tree is referenced by the shape
tree associated with the current access

need

Links to another access need whose
registered shape tree is the same as

the current access need

Example Assignees depend on a project Assignees inherit from contacts

Listing 1: Proposed DataAuthorizationDependentShape

<DataAuthorizationDependentShape> {
a [i n t e rop : DataAuthorizat ion] ,

i n t e rop : grantee IRI ,
i n t e rop : r eg i s t e redShapeTree IRI ,
i n t e rop : s a t i s f i e sAc c e s sNe ed IRI ? ,
i n t e rop : accessMode @<#AccessModes>+ ,
in t e rop : creatorAccessMode @<#AccessModes>* ,

i n t e rop : scopeOfAuthor izat ion [i n t e rop : Dependent] ,
i n t e rop : dependsFromAuthorization IRI

}

Fig. 2: Revised Scope of Access - Example

8

Table 4: INTEROP Shapes Suggested Predicates Changes Summary
Shape Predicates Changes

AccessNeedShape + interop:hasAccessNeed
+ interop:hasAccessNeedDescription
+ interop:hasPurpose

AccessNeedGroupShape + interop:hasAccessNeedGroupDescription
– interop:hasAccessDescriptionSet

AccessNeedDescriptionShape + skos:definition

DataRegistrationShape + ldp:contains

DataAuthorization-
SelectedFromRegistryShape

– interop:hasDataRegistration

SocialAgentShape + foaf:name
+ foaf:givenName
+ foaf:familyName

4.2 Implementation

The open source prototype implementation is a Vue.js web application with a
Java/PostgreSQL back-end7 available under a GNU GPL v3.0 license.

Fig. 3: Solid INTEROP Application Access Request User Interface

It has two goals: 1) implement the application access requests and autho-
rization from the INTEROP specification, and 2) prototype our UI architecture

7 Source Code: https://github.com/HBailly/solid-auth-ui/

9

https://github.com/HBailly/solid-auth-ui/

for experiments enabling users to view and interact with application requests,
and create corresponding authorizations. The scope does not include realizing
an INTEROP authorization agent, nor enforcing the authorizations (although
they are validated, see experiment).

The prototype dynamically loads access requests from a set of files stored
on the server, validates the contents, and populates a Vue.js template. Users
are presented with the populated template (Figure 3), and can review the ap-
plication access needs, then customize the authorizations they want to grant.
On submission, the server stores the authorizations in a PostgreSQL database.
All data exchanges are handled natively in RDF. The front-end depends on the
shex-codegen8 and shex-methods9 Node.js libraries to parse and interact with
the turtle files: All inputs/outputs are converted from and to RDF triples, and
verified against ShEx models. The implementation uses the referenced RDF on-
tologies to fetch term descriptions and generate UI elements and tooltips.

shex-codegen is used during development to generate JavaScript objects (sha-
pes) from a list of ShExes. These shapes can then be used at runtime with
shex-methods to manipulate RDF nodes from the turtle files. To generate all
shapes associated with the INTEROP specification, we used the ShEx provided
along the specification. This revealed two shortcomings in the shex-codegen li-
brary. First, it does not support typed string data types. Only plain RDF literals
are adequately supported. This issue was raised with the maintainer, and is un-
der investigation10. It was overcome in the prototype by rewriting ShEx files to
temporarily use xsd:string for the shape generation, then editing the generated
files.

This work also revealed an issue with the shex-methods library, specifically
with its dependency rdflib.js, which handles the creation and persistence of
RDF resources. Several files from the INTEROP specification make use of es-
caped text sequences. While this is permitted under the RDF specification11, it
is currently not supported by the N3 parser in rdflib.js. The issue was reported
to the maintainers of the library12. A temporary fix was applied in a local ver-
sion of the library, which requires manual building into shex-methods, and the
prototype13.

This process enabled us to build a working prototype of our UI architec-
ture that could dynamically create interactive UI elements from the turtle files
provided by a test harness application.

8 https://github.com/ludwigschubi/shex-codegen
9 https://github.com/ludwigschubi/shex-methods

10 https://github.com/ludwigschubi/shex-codegen/pull/139
https://github.com/ludwigschubi/shex-codegen/pull/140

11 www.w3.org/TR/turtle/
12 https://github.com/linkeddata/rdflib.js/pull/523

https://github.com/linkeddata/rdflib.js/pull/557
13 https://github.com/HBailly/solid-auth-ui/blob/main/pom.xml#942

10

https://github.com/ludwigschubi/shex-codegen
https://github.com/ludwigschubi/shex-methods
https://github.com/ludwigschubi/shex-codegen/pull/139
https://github.com/ludwigschubi/shex-codegen/pull/140
https://github.com/linkeddata/rdflib.js/pull/523
https://github.com/linkeddata/rdflib.js/pull/557
https://github.com/HBailly/solid-auth-ui/blob/main/pom.xml/#942

5 Evaluation

This section presents two evaluations of the prototype, verifying whether the
design met the requirements R5 and R6. The first evaluation was based on the
Nielsen Heuristics and took place during the design and implementation phase
of the prototype, while the second evaluation focused on the SUS, NPS and user
feedback about the definitive version in a structured online experiment.

5.1 Demos and Usability Heuristics

The prototype was first demoed to participants of the COST EU Workshop on
Privacy Issues in Distributed Social Knowledge Graphs (PIDSKG) 14. Approx-
imately 20 attendees were introduced to the research, shown the user interface,
and were able to ask questions or raise concerns. The most frequently expressed
concerns were about the ease of use, and the lack of an option to quickly select/
deselect all optional access needs.

Next, the prototype was submitted to three preliminary evaluators from the
ADAPT Research Centre, who were familiar with Linked Data and program-
ming. They were tasked with evaluating the prototype using Nielsen’s design
heuristics. The evaluations took place remotely, in short sessions of 30 minutes,
where the evaluators were also introduced to the research topic. They were then
invited to use the UI and find violations of the heuristics (see Table 5). They
raised issues regarding the vocabulary used in the interface, which was often
complex and technical. They also pointed out several visibility issues with the
appearance of buttons and relations between sections of the UI.

Table 5: Heuristics Breaches Identified Count
Severity

Heuristic Description Minor Moderate Serious Severe Critical

1. Visibility Visibility of system status 0 0 0 0 0
2. Information Match between system and real world 2 2 1 0 0
3. Consistency Consistency and standards 0 0 0 0 0
4. Recognition Recognition rather than recall 2 1 0 0 0
5. Flexibility Flexibility and efficiency of use 0 0 0 0 0
6. Minimalism Aesthetic and minimalist design 0 0 0 0 0

Post-Evaluation UI Refinement The UI was reworked partially to include
cascading selection of access needs and other shortcuts. The INTEROP ontology
was also locally edited, and the terms identified as too technical by the evaluators
were updated.

5.2 SUS, NPS, Access Authorization Validity and User Feedback

The second evaluation was a formal experiment to validate the prototype usabil-
ity and user-friendliness, that it met the requirements from section 2, and em-

14 https://cost-dkg.eu/

11

powered users to correctly create access authorizations. It was an asynchronous,
opt-in experiment.

Participants were selected from two categories in two areas of expertise: ex-
perts in the Solid ecosystem and/or in GDPR legal requirements, and students
in computing or in privacy law. The participants were invited from: the COST
ACTION DKG Conference on SOLID 2022 attendees, the Solid community Fo-
rum, the Solid Data Interoperability Panel Gitter, LinkedIn, the DCU Master
in Computing 2022, and personal communications. The experiment was freely
available online: any person with the link could connect, complete the tasks and
the questionnaires. A major power failure in the host site reduced participant
numbers during the collection period.

The experiment itself was designed as follows: 1) Participants first completed
a questionnaire on demographic data, relevant expertise and the Westin privacy
classification questions. 2) Participants were then introduced to the research
topic and provided with brief background, as well as links to further internet
resources, short videos15 introducing the user interface, and a glossary of terms.
3) Participants received guidelines on three directed tasks. During each task, they
were requested to grant access authorizations corresponding to a gold standard,
using the prototype. They were also presented with the situation they were
asked to imagine themselves in (next paragraph). Participants conducted the
three tasks sequentially in the same order. The task output and execution time
were recorded. 4) Participants were invited to score the user interface using SUS
and NPS questionnaires, and to provide feedback about their experience16.

The three directed tasks placed the participant into the position of Alice as
per our Use Case (Section 2) derived from the INTEROP specification. Alice
is presented with the application’s access request and must decide what access
to authorize (permissions). Each task is a variation of the access request, and
requires the user to select the same permissions each time. The variations are
of increasing complexity: i) a simple access request with five access needs (flat
hierarchy); ii) introduces dependency between the access needs, and similar needs
within different dependencies (nested hierarchy); and iii) includes inheritance on
top of the dependency (nested hierarchy with inheritance).

5.3 Results and Discussion

In total, there were 15 participants to the experiment: Most were male, aged
less than 36, and all had at least a bachelor’s degree. Using Jensen, Potts, and
Jensen’s Westin classification questionnaire, we observed a slightly more privacy-
concerned distribution of the participants (ordinarily 26-64-10% [16]). Many had
previous experience with programming, and there were experts in Solid, IN-
TEROP and/or GDPR privacy law.

Tasks: On average, it took between 2.5 and 4.5 minutes to complete a task.
The observed the number of errors follows the increasing complexity of the tasks.

15 https://github.com/HBailly/solid-auth-ui/tree/main/tutorials/
16 https://github.com/HBailly/solid-auth-ui/tree/main/docs/questionnaires

12

https://github.com/HBailly/solid-auth-ui/tree/main/tutorials/
https://github.com/HBailly/solid-auth-ui/tree/main/docs/questionnaires

The sharing of contacts proved to be the most challenging part of the directed
tasks (78.5% average error rate). Moreover, none of the participants de-selected
an optional access need during any of the directed tasks, even if they had a high
desire for privacy (perhaps due to the low stakes or personal involvement in the
tasks). Table 6 summarizes the authorizations crafted by the participants, and
compares them with the gold standard requested by the tasks.

Table 6: User-granted Authorization Deviations from Gold Standard
Access Need Gold Standard Authorization granted when deviating from gold standard17

OK All
All From
Registry

Selected From
Registry

All From
Agent

Dependent Inherited None Total

Version 1

need-project All from Registry
9

60.0%
2

13.3%
0
0%

3
20/0%

1
6.7%

0
0%

0
0%

0
0%

15

need-task All from Registry
11

73.3%
2

13.3%
1

6.7%
1

6.7%
0
0%

0
0%

0
0%

0
0%

15

need-contact Selected From Registry
10

66.7%
0
0%

2
13.3%

0
0%

0
0%

3
3.%

0
0%

0
0%

15

need-account-details All
13

86.7%
0
0%

1
6.7%

0
0%

1
6.7%

0
0%

0
0%

0
0%

15

need-credit-details Selected From Registry
11

73.3%
1

6.7%
3

20.0%
0
0%

0
0%

0
0%

0
0%

0
0%

15

Version 2

need-project All from Registry
10

66.7%
1

6.7%
0
0%

3
20%

1
6.7%

0
0%

0
0%

0
0%

15

need-task All from Agent
10

66.7%
1

6.7%
2

13.3%
2

13.3%
0
0%

0
0%

0
0%

0
0%

15

need-contact-project None
0
0%

3
10.3%

0
0%

7
0%

1
6.7%

4
26.7%

0
0%

0
0%

15

need-contact-task Selected From Registry
5

33.3%
1

6.7%
1

6.7%
2

13.3%
2

13.3%
4

26.7%
0
0%

0
0%

15

need-account-details All
11

73.3%
0
0%

4
26.7%

0
0%

0
0%

0
0%

0
0%

0
0%

15

need-credit-details Selected From Registry
13

86.7%
0
0%

2
13.3%

0
0%

0
0%

0
0%

0
0%

0
0%

15

Version 318

need-project All from Registry
7

50%
5

35.7%
0
0%

1
7.1%

1
7.1%

0
0%

0
0%

0
0%

14

need-task All from Agent
7

50%
3

21.4%
2

14.3%
2

14.3%
0
0%

0
0%

0
0%

0
0%

14

need-contact None
0
0%

4
28.6%

0
0%

9
64.3%

1
7.1%

0
0%

0
0%

0
0%

14

need-contact-project None
3

21.4%
0
0%

0
0%

1
7.1%

1
7.1%

0
0%

9
64.3%

0
0%

14

need-contact-task Selected From Registry
1

7.1%
1

7.1%
0
0%

1
7.1%

1
7.1%

0
0%

10
71.4%

0
0%

14

need-account-details All
10

71.4%
0
0%

4
28.6%

0
0%

0
0%

0
0%

0
0%

0
0%

14

need-credit-details Selected From Registry
11

78.6%
1

7.1%
2

14.3%
0
0%

0
0%

0
0%

0
0%

0
0%

14

Usability: Overall, the prototype only scored over 37.67 for more than 50%
of the participants of the survey using the System Usability Scale (the details of
which are presented in table 7), which indicates poor usability. This score was
independent of the nationality, level of education, expertise, or Westin privacy
classes. Participants were primarily concerned by the technicality, complexity

17 A deviation value of 1 with the same scope as the gold standard (e.g. All from
Registry) indicates that a participant selected the right type of scope (All from
Registry), but a wrong value (an incorrect registry).

18 One of the participants skipped the version 3 task, and is thus excluded from the
analysis of this version.

13

and cumbersomeness of the UI, which directly exposed the complex application
resource requests. Most participants also found that the process was too long, but
more than half thought that it was worthwhile. The participants with the most
negative attitude towards the UI were also those finding the duration excessive.

Table 7: SUS Questionnaire
Question Strongly

disagree
Disagree Neutral Agree Strongly

agree

I think that I would like to
use this system frequently.

4
26.7%

2
13.3%

4
26.7%

5
33.3%

0
0%

I found the system unnecessarily complex.
1

6.7%
4

26.7%
3

20%
3

20%
4

26.7%

I thought the system was easy to use.
4

26.7%
3

20%
4

26.7%
4

26.7%
0
0%

I think that I would need the support of a
technical person to be able to use this system.

1
6.7%

4
26.7%

1
6.7%

9
60%

0
0%

I found the various functions in
this system were well integrated.

0
0%

2
13.3%

5
33.3%

7
46.7%

1
6.7%

I thought there was too much
inconsistency in this system.

2
13.3%

7
46.7%

5
33.3%

0
0%

1
6.7%

I would imagine that most people would
learn to use this system very quickly

6
40%

4
26.7%

1
6.7%

4
26.7%

0
0%

I found the system very cumbersome to use.
0
0%

3
20%

3
20%

7
46.7%

2
13.3%

I felt very confident using the system.
7

46.7%
2

13.3%
4

26.7%
1

6.7%
1

6.7%

I needed to learn a lot of things before
I could get going with this system

0
0%

6
40%

2
13.3%

5
33.3%

2
13.3%

Participants were divided when declaring their satisfaction with the pro-
totype, as highlighted by the Net Promoter Score (5.4 on average - detractor
stance), and the propensity to use it again (Positive: 5; Neutral : 4; Negative:
6). Noticeably, participants belonging to the fundamentalists were more positive
about the prototype (average: 8; count : 5), whereas participants belonging to
the pragmatic class were more likely to be detractors (average: 3.67; count : 9)19.
Participants with a strong Solid or interop background also had a higher Net
Promoter Score than the others.

When asked what version of the task they found the most appropriate / in-
formative, participants either chose the first (flat hierarchy) (in majority) or the
third version (nested hierarchy with inheritance). We found that the dividing
line was also the Westin classification of participants: pragmatic users largely
preferred the flat version (80%), while fundamentalists preferred the nested ver-
sion (40%) or none (40%)19. The most frequent reasons given by the pragmatic
users were that it was simpler and offered less choice, hence less confusion, and
that the dependency and inheritance mechanisms were not given away by the
prototype. On the contrary, 60% of the fundamentalists praised the hierarchy, as
it allowed them to better assess the consequences of granting access (the other
40% did not notice the difference). More generally, participants were united in
pointing out how there was too much information displayed, with many technical

19 There was not enough data to evaluate the unconcerned.

14

terms, whereas they would have preferred a more incremental process, perhaps
with a wizard, or a multilayered UI.

Finally, participants rated positively the visual and textual aids of the pro-
totype. No participant questioned the actual contents of the shapes requested,
even the fundamentalists, and found them moderately to very informative. Par-
ticipants did not agree on the utility of the GDPR purpose added in this design:
participants without little knowledge of privacy law and fundamentalists found
them informative, whereas pragmatics and people with declared expertise did
not notice them. Interestingly, 67% of participants rated the access modes in-
formative. When investigating whether they knew the difference between the
modes for existing instances, and instances created by the application after it
was authorized, only the participants with Solid expertise could tell correctly.

6 Conclusion

This paper prototyped the Solid INTEROP specification with an original UI
to enable users to review application access requirements and define access and
usage authorizations. We identified areas for improvement in the INTEROP draft
specification, both in terms of Semantic Web best practice and to better support
dynamic access control UI generation (Section 4). We showed that Solid is not
using best practices in policy interfaces (Section 3) by relying on text editors,
and that usage control remains an open issue under INTEROP. Our dynamic
UI prototype based on Semantic Web tools identified limitations with current
Semantic Web tools and libraries. Usability evidence collected also suggested
that the fine-grained and expressive controls of INTEROP will require careful
UI design to avoid overwhelming users (Section 5). The main reasons were the
length and complexity of the requests and the terminology used. Participants
felt in control of their data, but repeatedly failed in tasks to correctly generate
authorizations and could not explain what access modes they granted. This is
a limited study (n=15), mainly conducted with experts, and a broader study
should be conducted next.

Acknowledgement This research had the financial support of Science Founda-
tion Ireland under the ADAPT Centre for AI-driven Digital Content Technology,
SFI Research Centres Programme (Grant 13/RC/2106 P2). For the purpose of
Open Access, the authors have applied a CC-BY public copyright license to any
author accepted manuscript version arising from this submission.

References

[1] Konstantin Beznosov et al. “Usability Meets Access Control”. In: vol. 2807.
ACM Press, June 3, 2009, p. 73. doi: 10.1145/1542207.1542220.

[2] Justin Bingham, Eric Prud’Hommeaux, and Elf Pavlik. Solid Application
Interoperability. W3C Editor’s Draft. Jan. 2022. url: https://solid.
github.io/data-interoperability-panel/specification/.

15

https://doi.org/10.1145/1542207.1542220
https://solid.github.io/data-interoperability-panel/specification/
https://solid.github.io/data-interoperability-panel/specification/

[3] Matthieu Bosquet. Access Control Policy (ACP). Solid Editor’s Draft.
May 18, 2022. url: https://solid.github.io/authorization-panel/
acp-specification/.

[4] John Brooke. “SUS: A quick and dirty usability scale”. In: Usability Eval-
uation In Industry. CRC Press, Nov. 1996. Chap. Off-the-Shelf Evaluation
Methods. doi: 10.1201/9781498710411-35.

[5] Xiang Cao and Lee Iverson. “Intentional Access Management: Making Ac-
cess Control Usable for End-Users”. In: Proceedings of the Second Sympo-
sium on Usable Privacy and Security. SOUPS ’06. Pittsburgh, Pennsyl-
vania, USA: Association for Computing Machinery, 2006, pp. 20–31. doi:
10.1145/1143120.1143124.

[6] Sarven Capadisli and Tim Berners-Lee. Web Access Control. Version 1.0.0.
Editor’s Draft. July 5, 2022. url: https://solid.github.io/web-
access-control-spec/.

[7] Sarven Capadisli et al. Solid Protocol. Version 0.9.0. Dec. 17, 2021. url:
https://solidproject.org/TR/protocol.

[8] Beatriz Esteves. Solid ODRL access control Policies Editor. GitHub. 2022.
url: https://github.com/besteves4/solid-sope.

[9] Beatriz Esteves et al. “Using the ODRL Profile for Access Control for
Solid Pod Resource Governance”. In: Extended Semantic Web Conference
(ESWC) (June 2022). doi: 10.5281/zenodo.6614777.

[10] Erman Hamid, Azizah Jaafar, and Ang Mei Choo. “A Review of ‘Human-
Computer Interaction’ Influence to Home Network”. In: Jurnal Teknologi
75 (3 July 2015), pp. 21–27. doi: 10.11113/jt.v75.5038.

[11] Renato Iannella and Serena Villata. ODRL Information Model. Ver-
sion 2.2. W3C Recommendation. Feb. 15, 2018. url: www.w3.org/TR/
odrl-model/.

[12] Inrupt Inc. Access Policies: Universal API. 2022. url: https://docs.
inrupt . com / developer - tools / javascript / client - libraries /

tutorial/manage-access-policies/.
[13] Carlos Jensen, Colin Potts, and Christian Jensen. “Privacy practices of

Internet users: Self-reports versus observed behavior”. In: International
Journal of Human-Computer Studies 63.1-2 (July 2005), pp. 203–227. doi:
10.1016/j.ijhcs.2005.04.019.

[14] Sabrina Kirrane, Marina De Vos, and Julian Padget. ODRL Regulatory
Compliance Profile. Version 0.2. W3C Unofficial Draft. Aug. 2020. url:
https://ai.wu.ac.at/policies/orcp/regulatory-model.html.

[15] Sabrina Kirrane, Alessandra Mileo, and Stefan Decker. “Access control and
the Resource Description Framework: A survey”. In: Semantic Web 8 (2
Dec. 2016). Ed. by Bernardo Cuenca Grau, pp. 311–352. doi: 10.3233/SW-
160236.

[16] Ponnurangam Kumaraguru and Lorrie Cranor. Privacy Indexes: A Survey
of Westin’s Studies. Tech. rep. Pittsburgh, PA: Carnegie Mellon University,
Dec. 2005. url: www.cs.cmu.edu/~ponguru/CMU-ISRI-05-138.pdf.

16

https://solid.github.io/authorization-panel/acp-specification/
https://solid.github.io/authorization-panel/acp-specification/
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1145/1143120.1143124
https://solid.github.io/web-access-control-spec/
https://solid.github.io/web-access-control-spec/
https://solidproject.org/TR/protocol
https://github.com/besteves4/solid-sope
https://doi.org/10.5281/zenodo.6614777
https://doi.org/10.11113/jt.v75.5038
www.w3.org/TR/odrl-model/
www.w3.org/TR/odrl-model/
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/manage-access-policies/
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/manage-access-policies/
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/manage-access-policies/
https://doi.org/10.1016/j.ijhcs.2005.04.019
https://ai.wu.ac.at/policies/orcp/regulatory-model.html
https://doi.org/10.3233/SW-160236
https://doi.org/10.3233/SW-160236
www.cs.cmu.edu/~ponguru/CMU-ISRI-05-138.pdf

[17] Yuanhua Liu, Anna-Lisa Osvalder, and MariAnne Karlsso. “Considering
the Importance of User Profiles in Interface Design”. In: User Interfaces
(May 2010), p. 270. doi: 10.5772/8903.

[18] Essam Mansour et al. “A Demonstration of the Solid Platform for Social
Web Applications”. In: Proceedings of the 25th International Conference
Companion on World Wide Web - WWW ’16 Companion. New York,
New York, USA: ACM Press, 2016, pp. 223–226. doi: 10.1145/2872518.
2890529.

[19] Yannic Meier, Johanna Schäwel, and Nicole C. Krämer. “The Shorter
the Better? Effects of Privacy Policy Length on Online Privacy Decision-
Making”. In: Media and Communication 8 (2 June 2020), pp. 291–301.
doi: 10.17645/mac.v8i2.2846.

[20] Jakob Nielsen. Thinking Aloud: The #1 Usability Tool. Nielsen Norman
Group. Jan. 25, 2012. url: https : / / www . nngroup . com / articles /
thinking-aloud-the-1-usability-tool/.

[21] Official Journal of the European Union. General Data Protection Regu-
lation (2016/679). Brussels, 2016. url: http://eur-lex.europa.eu/
legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679.

[22] Harshvardhan J. Pandit et al. “Creating a Vocabulary for Data Privacy”.
In: Lecture Notes in Computer Science. Vol. 11877 LNCS. Springer, Cham,
Oct. 2019, pp. 714–730. doi: 10.1007/978-3-030-33246-4_44.

[23] Maŕıa Poveda-Villalón, Asunción Gómez-Pérez, and Mari Carmen Suárez-
Figueroa. “OOPS! (OntOlogy Pitfall Scanner!): An On-line Tool for On-
tology Evaluation”. In: International Journal on Semantic Web and In-
formation Systems (IJSWIS) 10.2 (2014), pp. 7–34.

[24] Lee Rainie and Maeve Duggan. Americans’ Opinions on Privacy and
Information Sharing. Pew Research Center. Jan. 14, 2016. url: www .

pewresearch.org/internet/2016/01/14/privacy-and-information-

sharing/.
[25] Frederick F. Reichheld. The One Number You Need to Grow. Growth Strat-

egy. Dec. 2003. url: https://hbr.org/2003/12/the-one-number-you-
need-to-grow.

[26] Erik Rissanen. eXtensible Access Control Markup Language (XACML).
Committee Draft 03. Version 3.0. Oasis. Mar. 11, 2010. url: http://docs.
oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.pdf.

[27] Ravi Sandhu and Jaehong Park. “Usage Control: A Vision for Next Gener-
ation Access Control”. In: Lecture Notes in Computer Science. Vol. 2776.
2003, pp. 17–31. doi: 10.1007/978-3-540-45215-7_2.

[28] R. K. Thomas and R. S. Sandhu. “Conceptual Foundations For a Model
of Task-Based Authorizations”. In: Proceedings of the Computer Security
Foundations Workshop (1995), pp. 66–79. doi: 10.1109/CSFW.1994.
315946.

[29] Kami Vaniea et al. “Access Control Policy Analysis and Visualization Tools
for Security Professionals”. In: SOUPS Workshop on Usable IT Security

17

https://doi.org/10.5772/8903
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.17645/mac.v8i2.2846
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://doi.org/10.1007/978-3-030-33246-4_44
www.pewresearch.org/internet/2016/01/14/privacy-and-information-sharing/
www.pewresearch.org/internet/2016/01/14/privacy-and-information-sharing/
www.pewresearch.org/internet/2016/01/14/privacy-and-information-sharing/
https://hbr.org/2003/12/the-one-number-you-need-to-grow
https://hbr.org/2003/12/the-one-number-you-need-to-grow
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.pdf
https://doi.org/10.1007/978-3-540-45215-7_2
https://doi.org/10.1109/CSFW.1994.315946
https://doi.org/10.1109/CSFW.1994.315946

Management (USM) 2008. Pittsburgh, PA USA, July 23, 2008, pp. 7–15.
url: https://cups.cs.cmu.edu/soups/2008/USM/vaniea.pdf.

[30] Ruben Verborgh. “Re-decentralizing the Web, for good this time”. In:
Linking the World’s Information: A Collection of Essays on the Work
of Sir Tim Berners-Lee. Ed. by Oshani Seneviratne and James Hendler.
ACM, 2022. url: https : / / ruben . verborgh . org / articles /

redecentralizing-the-web/.
[31] Mohamed Zaki et al. The Fallacy of the Net Promoter Score: Customer

Loyalty Predictive Model. University of Cambridge. Oct. 2016. url: https:
/ / cambridgeservicealliance . eng . cam . ac . uk / system / files /

documents/2016OctoberPaper_FallacyoftheNetPromoterScore.pdf.

18

https://cups.cs.cmu.edu/soups/2008/USM/vaniea.pdf
https://ruben.verborgh.org/articles/redecentralizing-the-web/
https://ruben.verborgh.org/articles/redecentralizing-the-web/
https://cambridgeservicealliance.eng.cam.ac.uk/system/files/documents/2016OctoberPaper_FallacyoftheNetPromoterScore.pdf
https://cambridgeservicealliance.eng.cam.ac.uk/system/files/documents/2016OctoberPaper_FallacyoftheNetPromoterScore.pdf
https://cambridgeservicealliance.eng.cam.ac.uk/system/files/documents/2016OctoberPaper_FallacyoftheNetPromoterScore.pdf

	Prototyping an End-User User Interface for the Solid Application Interoperability Specification under GDPR

