
Boosting Knowledge Graph Generation from
Tabular Data with RML Views

Julián Arenas-Guerrero , Ahmad Alobaid , Maŕıa Navas-Loro ,
Maŕıa S. Pérez , and Oscar Corcho

Ontology Engineering Group, Universidad Politécnica de Madrid, Madrid, Spain
{julian.arenas.guerrero,ahmad.alobaid,m.navas,maria.s.perez,oscar.corcho}@upm.es

Abstract. A large amount of data is available in tabular form. RML
is commonly used to declare how such data can be transformed into
RDF. However, RML presents limitations that lead, in many cases, to
the need for additional preprocessing using scripting. Although some
proposed extensions (e.g., FnO or RML fields) address some of these
limitations, they are verbose, unfamiliar to most data engineers, and
implemented in systems that do not scale up when large volumes of data
need to be processed. In this work, we expand RML views to tabular
sources so as to address the limitations of this mapping language. In this
way, transformation functions, complex joins, or mixed syntax can be
defined directly in SQL queries. We present our extension of Morph-KGC
to efficiently support RML views for tabular sources. We validate our
implementation adapting R2RML test cases with views and compare
it against state-of-the-art RML+FnO systems showing that our system
is significantly more scalable. Moreover, we present specific examples
of a real use case in the public procurement domain where basic RML
mappings could not be used without additional preprocessing.
Resource type: Software framework
License: Apache 2.0
DOI: 10.5281/zenodo.7385488
URL: https://github.com/morph-kgc/morph-kgc

Keywords: Knowledge Graph · RML · CSV · Data Integration

1 Introduction

An extensive amount of data is stored as CSV, Microsoft Excel spreadsheets,
and other tabular formats such as Apache Parquet [3] or Apache ORC [2].
Many organizations are also transforming these data sources into RDF knowl-
edge graphs [30] (KGs), given their potential to integrate, represent, and publish
heterogeneous data according to the model given by one or several ontologies.

Data transformations from tabular sources into RDF are typically defined
in a systematic manner using mapping languages [43]. These languages increase
the maintainability of the data integration pipelines and prevent the use of ex-
ternal scripting [13]. In addition, mappings leverage specialized data integration

https://orcid.org/0000-0002-3029-6469
https://orcid.org/0000-0001-8637-6313
https://orcid.org/0000-0003-1011-5023
https://orcid.org/0000-0003-2949-3307
https://orcid.org/0000-0002-9260-0753
https://github.com/morph-kgc/morph-kgc


2 Arenas-Guerrero et al.

systems that come with rich functionality and are optimized for large-scale use
cases.

The RDF Mapping Language [23] (RML) is a popular language [10] that ex-
tends theW3C Recommendation RDB to RDFMapping Language [17] (R2RML)
to data formats beyond relational databases (RDBs). In real-world data integra-
tion scenarios, some computations, such as transformation functions, complex
joins, or extraction of embedded values, need to be applied to the input data.
R2RML enables these computations by wrangling the data using SQL queries
in the mappings that are executed over RDBs. However, RML does not allow
this for tabular sources, which limits the capabilities of the mapping language
for these common scenarios.

Although RML has already been extended with additional constructs to en-
able complex operations (e.g., FnO [19] and FunUL [16] for transformation func-
tions, or RML fields [21] and mixed-syntax paths [36] for nested data), relying
on SQL may ease the development of mappings by data engineers who know
this query language well and are generally unfamiliar with semantic web tech-
nologies. Moreover, current implementations of these RML extensions, such as
RMLMapper [38], RocketRML[39] and RMLStreamer [40], do not scale to large
volumes of data [10]. This may impact the adoption of RML and its associated
systems in particular, and maintainability and scalability of data integration
pipelines in the broader scope.

In this work, we (i) analyze the limitations of RML and its implementations
for handling tabular data, (ii) address them with RML views, (iii) extend a
state-of-the-art system, Morph-KGC [8], to use SQL to define computations
over the tabular sources, (iv) validate it with test cases and two benchmarks in
the literature, and (v) apply our implementation to a real-world use case in the
public procurement domain.

The manuscript is structured as follows. Section 2 presents an overview of
RML, analyzes its limitations for tabular data, and expands RML views to
tabular sources. Section 3 introduces our implementation as an extension of
Morph-KGC. Section 4 validates the implementation using test cases and com-
pares it with current alternatives. Section 5 applies our extension to a real use
case in the public procurement domain. Finally, Section 6 presents the related
work, and Section 7 wraps up with some conclusions and future work lines.

2 RML Tabular Views

In this section, we introduce the main limitations of RML for handling tabular
data, as well as extensions that address part of them. After analyzing these
limitations, we present our approach and show how it solves them relying on
SQL.

2.1 RML Overview

RML is an extension of R2RML, a mapping language recommended by the
W3C to generate RDF from RDBs. It generalizes R2RML to any data source.



Boosting Knowledge Graph Generation from Tabular Data with RML Views 3

Fig. 1. RML overview (in Chowlk visual notation [24]).

Figure 1 depicts the structure of the RML mapping language, which includes
rml:LogicalSource as an extension of R2RML’s logical table.

An RML mapping document is an RDF document consisting of one or more
triples maps. A triples map has one logical source which can be (according to
the latest version of the RML specification [22]):

– A base source (any input source or a base table).
– A view (in the case of databases) given by a query.

For RDBs and tabular data sources, logical tables are iterated on a row basis
to generate triples. However, for other data models such as XML or JSON, it is
necessary to specify how this iteration occurs. This can be defined in RML
via the property rml:iterator, which can be optionally accompanied by a
rml:referenceFormulation specifying how the data is referred to, e.g., with
XPath or JSONPath.

RDF terms in RML are generated through functions known as term maps,
which describe how to generate them (using constants, references, or templates).
Term maps can be subject, predicate, object, or graph maps determined by
the position that the generated RDF terms take in the output RDF triples (or
quads). Two triples maps can be joined with a referencing object map, which uses
the subject map of the parent triples map to generate the object RDF terms.

2.2 Limitations of RML for Tabular Data Sources

As noted in the R2RML Recommendation, sometimes specific computations
need to be performed over the input data, such as transformations or filtering.
This can be achieved with R2RML views and the SQL query language by push-
ing down the computations to RDBMSs. However, views in RML do not cover
tabular data sources, which are restricted to RML’s base source [22]. This re-
duces the capabilities of the mapping language and led to a number of proposals
extending RML using additional constructs. In the following, we analyze the
limitations of RML for tabular data along with some extensions in the literature
that address them.



4 Arenas-Guerrero et al.

Transformation Functions [19]. Transformations of the data need to be
defined in the mapping to handle data cleaning and computations such as re-
shaping, aggregating, or filtering. RML’s base source uses the data source as
is, without additional modifications. Projections of the source may still be com-
puted using the references in the term maps [31] to avoid processing unnecessary
data. To allow declarative transformation functions in mappings, RML has been
extended with additional constructs, such as FnO [18,19] or FunUL [16].

Joins. RML is restricted regarding join operations over tabular sources. Ref-
erencing object maps join two triples maps (with their associated tabular base
sources) for which join conditions can be defined using rr:Join. Some of the
limitations of referencing object maps are:

– Multiple joins. A referencing object map involves two triples maps, conse-
quently, RML does not support joining three or more tabular sources. To the
best of our knowledge, no specific solution addressed this. A workaround to
enable multiple joins is to create a relational schema for the tabular sources,
load the data to an RDBMS and use an RML mapping with views to en-
code the joins in SQL queries. This implies increased complexity, due to the
cost of defining the SQL schema, the addition of an RDBMS to the data
integration pipeline, and the overhead of loading the data to it.

– Theta joins [32]. The class of join conditions in RML (i.e., rr:Join) only
allows for equality conditions. This is shown in the R2RML Recommenda-
tion, where the joint SQL query1 resulting from a referencing object map
is an equijoin. However, some data integration scenarios require theta joins
(or inequality joins). We are not aware of specific proposals tackling this
limitation, for which the workaround described for multiple joins could be
used.

– Literal generation with joins [20]. Referencing object maps use the subject
map of parent triples maps to generate the object RDF terms of the out-
put triples. Given that the term type of a subject map cannot be a literal
(enforced by the RDF data model), it is not possible in RML to generate
literals with RML’s base source. Recently, Debruyne [20] has proposed an
extension of RML enabling the generation of literals with joins.

Mixed Content [36]. Tabular sources in real data integration use cases usually
present composite data values: values such as JSON or lists are embedded in
cells. This has been referred to as mixed content [36]. RML does not allow for
mixed content, although solutions such as fields [21] or mixed-syntax paths [36]
addressed this limitation.

2.3 RML Views over Tabular Data

The approach of R2RML to solve the limitations above is R2RML views, which
uses the SQL query language to push down computations to RDBMSs. It must

1 https://www.w3.org/TR/r2rml/#dfn-joint-sql-query

https://www.w3.org/TR/r2rml/#dfn-joint-sql-query


Boosting Knowledge Graph Generation from Tabular Data with RML Views 5

be noted that R2RML views are different frommaterialized views [26]; the former
is an SQL query that is executed once and whose results are not persisted in the
RDBMS, the latter is a table in the database resulting from the execution of a
query for which refreshing policies apply (incremental, at regular time intervals,
or on demand).

The RML specification [22] currently limits the scope of RML views to
databases (the rr:R2RMLView class is not extended). The seminal work of RML [23]
already devised that logical sources could be extended to support views over
other data sources to allow data cleaning and transformation. However, views
have not yet been considered for tabular sources.

We extend RML views to tabular data, which address the limitations of
RML’s base source. An RML view over tabular sources is a logical table popu-
lated with data resulting from the execution of an SQL query against the input
tabular sources. It is represented by a resource with:

– One rml:query property (which extends R2RML’s rr:sqlQuery), whose
value is a literal with a lexical form that is a valid SELECT SQL query. The
query result set cannot have duplicate column names, and projected columns
resulting from an expression (e.g., aggregates) must be aliased to allow for
referenciation from term maps.

– Zero or one rml:referenceFormulation property. Because of backwards
compatibility with R2RML the property rr:sqlVersion can also be used.
RML predefines ql:CSV to refer to CSV files using columns. In the case
of RML views, the default is rr:SQL2008 but others could be used2. This
reference formulation applies to CSV and other tabular data formats such
as Apache Parquet.

– Zero or one rml:iterator property. This is optional, since the default per-
row iteration is assumed.

R2RML processors require an SQL connection3 to access the input database.
RML views over tabular sources do not need this connection, being the input
sources directly referenced in the SQL query (using absolute or relative paths
to the tabular files in the system or a URL for a remote file), which can be
conveniently aliased. Since tabular sources are referenced as they are (in an
RDBMS two tables with the same name can coexist in different databases), a
default catalogue and schema are used.

3 Morph-KGC: An Extension for RML Tabular Views

Our implementation of RML views over tabular data is based on Morph-KGC [8].
This data integration system is optimized to process large volumes of data and
supports the R2RML, RML, and RML-star [9] mapping languages. Due to the
latter, our extension also generates graphs in the emerging RDF-star [27] data

2 https://www.w3.org/2001/sw/wiki/RDB2RDF/SQL_Version_IRIs
3 https://www.w3.org/TR/r2rml/#dfn-sql-connection

https://www.w3.org/2001/sw/wiki/RDB2RDF/SQL_Version_IRIs
https://www.w3.org/TR/r2rml/#dfn-sql-connection


6 Arenas-Guerrero et al.

model. The system is implemented in Python and is built on top of the Pandas
library [35].

The mapping parser component was expanded to RML views. A logical source
is now defined internally by two variables: a type and a value. The type can be
a view, a source, or a table name, and the values are an SQL query, a path to a
data file, or a table in an RDB, respectively. Additionally, the source format for
a view (RDB or tabular, needed by the data loader component) is determined
by the presence or lack of presence of a database connection. If the RML view
is accompanied by a database connection, it is associated to the RDB format,
otherwise it is associated to the tabular format.

Tabular data is ingested into Morph-KGC using Pandas for RML’s base
source and DuckDB [37] for RML views, for which a new connector to this state-
of-the-art embedded analytical database has been implemented. The connector
currently supports CSV (with any delimiter, inferred on the fly) and Apache Par-
quet, which are accessed locally or remotely (hosted by cloud providers). After
evaluating a view, the query result set is transformed into a Pandas DataFrame,
which is the internal structure used by Morph-KGC for processing data. If the
logical source is related to a referencing object map or a star map, it will be
further joined internally. Given the modular design of the system and the use
of a source-independent internal data structure, the materialization procedure
is not affected.

This extension of Morph-KGC allows pushing down some operations in the
mappings, such as duplicate removal (using the DISTINCT clause), NULL elim-
ination (IS NOT NULL statement) or joins (replacing referencing object maps)
that can improve its performance. To the authors’ knowledge, Morph-KGC is the
first system that implements RML views over tabular data, solving the issues
of RML’s base source presented in Section 2.2, and avoiding the use of addi-
tional constructs such as RML+FnO or RML fields. The flexibility of views also
enables the creation of identifiers when they are missing from tabular sources4,
and can potentially solve more limitations of base RML that may arise. The
supported SQL syntax in the mapping is that of DuckDB (it can be consulted in
its documentation5), which is derived from PostgreSQL. The main limitation of
the system is the lack of user-defined functions; however, built-in SQL functions
cover most data integration use cases [13] and we are already working to support
them6.

Regarding scalability, the core optimization of Morph-KGC is based on map-
ping partitioning [8]. This technique consists in creating groups of mapping rules
that produce disjoint (i.e., non-overlapping) sets of triples. Each group of map-
pings can then be independently processed, generating a KG which is free of
duplicate triples. If a parallel execution of the mapping groups is used, then the
materialization time is minimized, and when they are sequentially processed,
memory consumption is reduced. RML+FnO prevents good mapping partition-

4 https://github.com/morph-kgc/morph-kgc/discussions/102
5 https://duckdb.org/docs/sql/introduction
6 https://github.com/morph-kgc/morph-kgc/issues/117

https://github.com/morph-kgc/morph-kgc/discussions/102
https://duckdb.org/docs/sql/introduction
https://github.com/morph-kgc/morph-kgc/issues/117


Boosting Knowledge Graph Generation from Tabular Data with RML Views 7

ing (i.e., obtaining a mapping partition with a high number of groups), while our
extension does not affect the partitioning. This is because to obtain a mapping
partition, the constant part of term maps (in rr:constant and rr:template)
is used; however, for function maps it is not possible to make assumptions of
constant parts of the generated RDF terms. By encoding transformation func-
tions in RML views, we avoid the need of function maps in Morph-KGC, thus
obtaining better mapping partitions and consequently, ensuring scalability.

Availability. The source code of Morph-KGC is actively maintained in a pub-
lic GitHub repository7. The releases are archived in Zenodo [5] with their cor-
responding DOIs and distributed through the Python Package Index8 (PyPi).
The system is available under the Apache License 2.0 and its documentation is
licensed under CC BY-SA 4.0.

Reusability. Morph-KGC is accompanied by detailed documentation hosted
in Read the Docs9. A tutorial of the system is available on the Google Collab-
oration10 platform using Python Notebooks with guide descriptions for users,
and it has also been presented in tutorials. Morph-KGC is also used in seman-
tic web courses in Universidad Politécnica de Madrid at the undergraduate and
postgraduate levels and could be reused for similar courses by other universities.
Furthermore, Morph-KGC is currently being used in several projects where the
Ontology Engineering Group is involved, including domains such as public pro-
curement (presented in Section 5) or labour (the EU project AI4LABOUR11,
where occupations and skills are linked to training courses for employees). In
addition, we are also supporting large private organizations (in the insurance
and manufacturing sectors12) in their data integration pipelines with tabular
sources, and the issues in the GitHub repository show that Morph-KGC is being
used by external organizations.

Design & technical quality. We carried out extensive evaluations validating
that our RML views extension of Morph-KGC performs similar to the original
system. As it will be explained in Section 4.1, we developed test cases for RML
views and added them to the continuous integration pipeline of the system.

4 Evaluation

In this section, we present the evaluation of RML views in Morph-KGC. First,
we extend the R2RML test cases using R2RML views to tabular sources and

7 https://github.com/morph-kgc/morph-kgc
8 https://pypi.org/project/morph-kgc/
9 https://morph-kgc.readthedocs.io

10 https://github.com/morph-kgc/morph-kgc/tree/main/examples/tutorial
11 https://doi.org/10.3030/101007961
12 Names are not disclosed for confidentiality reasons.

https://github.com/morph-kgc/morph-kgc
https://pypi.org/project/morph-kgc/
https://morph-kgc.readthedocs.io
https://github.com/morph-kgc/morph-kgc/tree/main/examples/tutorial
https://doi.org/10.3030/101007961


8 Arenas-Guerrero et al.

RML. Next, we compare the performance of our system with respect to state-
of-the-art RML+FnO engines using GTFS-Madrid-Bench [14]. Finally, we use
the LUBM4OBDA benchmark to validate that our system performs similarly
to using an RDBMS populated with the tabular data. All experiments are run
using Morph-KGC v2.3.1. The evaluation was performed on an Intel® Core™
i7-1165G7 (2.80GHz) and a memory of 40 GB RAM DDR4 (3200 MHz). All the
times reported are the average time of 5 executions, and we set the timeout to
24 hours.

4.1 Validation with Test Cases

The R2RML test cases [44] are a companion of the R2RML Recommendation
to validate the compliance of systems with respect to the mapping language.
Later, they were extended to RML [28]. However, given the lack of RML views
for tabular data sources at that time, test cases with R2RML views were only
considered for RDBs and excluded for the CSV data format. In order to vali-
date the compliance of Morph-KGC, we extended these R2RML test cases to
RML views. Table 1 lists them along with a description and an alternative solu-
tion using RML’s base source with additional constructs. It must be noted that
the test cases RMLTVTC0015a, RMLTVTC0015b and RMLTVTC0019a were
included in the RML test cases for CSV [28], but the tabular files were prepro-
cessed to enable RML’s base source. Here, we maintain the original structure of
the data in the R2RML test cases. We also created four additional test cases
(RMLTVTC0026a, RMLTVTC0027a, RMLTVTC0028a, RMLTVTC0029a) to
further validate some of the limitations described in Section 2.2.

Morph-KGC successfully passes all test cases, hence validating the compli-
ance of the system with respect to RML views. Test cases are publicly available
in the GitHub repository13 and Zenodo [6]. They are used for automated and
continuous testing of Morph-KGC with GitHub Actions.

4.2 Transformation Functions with GTFS-Madrid-Bench

In this experiment, we compare RML views to RML+FnO, and also evaluate
the performance of the RML view extension of Morph-KGC to state-of-the-art
RML+FnO systems. Materials are publicly available in Zenodo [4].

We use GTFS-Madrid-Bench, a benchmark in the transport domain which
is widely used to evaluate ontology-based data integration systems. The bench-
mark consists of 10 CSV files and the materialized KG for scaling factor 100
contains more than 35 millions of triples. The target data model includes 9 data
properties with xsd:boolean datatypes. Given that the benchmark produces 1s
and 0s as boolean values, the CSV data needs to be transformed to “true” and
“false” respectively to prevent the generation of ill-typed literals14. However, the

13 https://github.com/morph-kgc/morph-kgc/tree/main/test/rmltv
14 https://www.w3.org/TR/r2rml/#dfn-ill-typed

https://github.com/morph-kgc/morph-kgc/tree/main/test/rmltv
https://www.w3.org/TR/r2rml/#dfn-ill-typed


Boosting Knowledge Graph Generation from Tabular Data with RML Views 9

Table 1. Test cases that are not supported by RML’s base source.

Test Case Description RML Support

RMLTVTC0002d Concatenation of a column and a string. RML+FnO
RMLTVTC0002g Tests the presence of an invalid SQL query. N/A

RMLTVTC0002h
Tests the presence of duplicate column
names in the SELECT list of the SQL query.

N/A

RMLTVTC0002i
Two columns mapping, SQL version identi-
fier.

N/A

RMLTVTC0002j
Two columns mapping, qualified column
names.

N/A

RMLTVTC0003b Concatenation of two columns and a string. RML+FnO
RMLTVTC0009c Concatenation of two columns and a string. RML+FnO
RMLTVTC0009d Aggregation of a column. RML+FnO

RMLTVTC0011a M to M relation, by using an SQL query.
Yes (by using
an additional
Triples Map)

RMLTVTC0014d Replacement of data values. RML+FnO
RMLTVTC0015a Filtering. RML+FnO
RMLTVTC0015b Filtering. RML+FnO
RMLTVTC0019a Filtering. RML+FnO
RMLTVTC0026a Embedded list in a column. RML+FnO
RMLTVTC0027a Embedded JSON in a column. RML+Fields
RMLTVTC0028a Generation of literals with joins. RML+[20]
RMLTVTC0029a Join of multiple sources. No

mappings provided by the benchmark do not take this into account, so we ex-
tended them to address this issue using RML views and RML+FnO. Listing 1.1
shows an example mapping rule (in the human-readable YARRRML [29] syn-
tax) for RML views, which employs two replace functions (other alternatives,
such as casting to boolean, are possible). Listing 1.2 shows the same example
mapping with RML+FnO using a composite function: a condition for filtering
the 1s/0s and a replace function to transform the values to true/false. As can be
observed, RML+FnO results in a more verbose mapping that may impact their
maintainability.

For the performance evaluation of both approaches, we compare Morph-KGC
v2.3.1 to RMLMapper v6.0.0 [38] and RocketRML 2.1.0 [39]. For RMLMapper
we employed predefined functions (as shown in Listing 1.2), and for RocketRML
we implemented a user-defined function (since the provided function set of the
system is more limited). Figure 2(a) depicts the materialization times of the sys-
tems for data scaling factors 1, 10 and 100 of GTFS-Madrid-Bench. Morph-KGC
is one order of magnitude faster than RocketRML, and the difference increases
even more with respect to RMLMapper. In fact, the former yields an out-of-
memory error and the latter produces timeouts when materializing the KG for
scaling factor 100.



10 Arenas-Guerrero et al.

Listing 1.1. RML views mapping example for GTFS-Madrid-Bench and Morph-KGC.

mappings:

calendar_date_rules:

sources:

- query: |
SELECT service_id , date , REPLACE(REPLACE(

exception_type , ’1’, ’true’), ’0’, ’false’) AS

exception_type

FROM ’data/CALENDAR_DATES.csv’

s: http:// transport.linkeddata.es/madrid/metro/

calendar_date_rule /{ service_id }-{date}

po:

- [gtfs:dateAddition , $(exception_type), xsd:boolean]

Listing 1.2. RML+FnOmapping example for GTFS-Madrid-Bench and RMLMapper.

mappings:

calendar_date_rules:

sources:

- [data/CALENDAR_DATES.csv~csv]

s: http:// transport.linkeddata.es/madrid/metro/

calendar_date_rule/$(service_id)-$(date)
po:

- predicates: gtfs:dateAddition

objects:

datatype: xsd:boolean

function: grel:string_replace

parameters:

- [grel:valueParameter , $(exception_type)]
- [grel:p_string_find , "1"]

- [grel:p_string_replace , "true"]

condition:

function: idlab -fn:stringContainsOtherString

parameters:

- [idlab -fn:str , $(exception_type)]
- [idlab -fn:otherStr , "1"]

- [idlab -fn:delimiter , ""]

- predicates: gtfs:dateAddition

objects:

datatype: xsd:boolean

function: grel:string_replace

parameters:

- [grel:valueParameter , $(exception_type)]
- [grel:p_string_find , "0"]

- [grel:p_string_replace , "false"]

condition:

function: idlab -fn:stringContainsOtherString

parameters:

- [idlab -fn:str , $(exception_type)]



Boosting Knowledge Graph Generation from Tabular Data with RML Views 11

- [idlab -fn:otherStr , "0"]

- [idlab -fn:delimiter , ""]

4.3 Multiple Joins with the LUBM4OBDA Benchmark

Real data integration use cases over tabular data usually involve performing
complex joins. In these cases, RML views is the only solution that does not
require preprocessing, since RML’s base source cannot deal with them even
with extensions. The aim of this experiment is to show how our extension of
Morph-KGC can handle complex joins efficiently even in the presence of large
volumes of data.

To evaluate Morph-KGC in data integration scenarios with multiple joins
over tabular data, we used the LUBM4OBDA benchmark15. LUBM4OBDA is
an ontology-based data access benchmark (in the university domain) over RDBs
that involves R2RML views with up to four joins in the SQL queries. Since
the benchmark provides the data as SQL dumps, we exported the tables as
tabular data in CSV and Apache Parquet (in a similar manner as done by
GTFS-Madrid-Bench) formats. The benchmark consists of 14 tabular files, that
result in an output KG of more than 150 million triples for scaling factor 1000.
This data and the mappings are openly available in Zenodo [7]. We exclude
RMLMapper and RocketRML from this experiment since they do not allow
multiple joins. As an alternative, we considered a setup in which a relational
representation of the tabular sources is created, the tabular data is loaded into
an RDBMS, and mappings using standard R2RML views are used (as explained
in Section 2.2). We just take into account the materialization times, ignoring
the additional cost of creating the relational representation, and the overhead of
loading the data into an RDBMS. We use PostgreSQL 15.0, MySQL 8.0.31 and
data scaling factors 1, 10, 100 and 1000 of LUBM4OBDA.

Figure 2(b) shows the materialization times obtained. It is observed that
Morph-KGC is faster when materializing directly from tabular sources com-
pared to relying on RDBMSs. Differences are appreciated between RDBMSs, in
particular, while PostgreSQL is not far from the materialization times obtained
for tabular data, times significantly increase for MySQL when the scaling factor
is large. This proves that our implementation supports multiple joins and that
it is even more efficient than relying on RDBMSs.

5 A Real World Use Case in Public Procurement

Public procurement represents a relevant budget expense of many states world-
wide. For example, the European Union spends around 14% of its annual gross
domestic product on the purchase of services, utilities, and supplies16. Free ac-
cess to this data facilitates accountability and transparency. Therefore, many

15 https://github.com/oeg-upm/lubm4obda
16 https://ec.europa.eu/growth/single-market/public-procurement_en

https://github.com/oeg-upm/lubm4obda
https://ec.europa.eu/growth/single-market/public-procurement_en


12 Arenas-Guerrero et al.

(a) GTFS-Madrid-Bench.

1 10 100 1000
Data Scaling Factor

10
1

10
2

10
3

Ti
m

e 
E

la
ps

ed
 (s

ec
on

ds
)

CSV
Parquet
MySQL
PostgreSQL

(b) LUBM4OBDA benchmark.

Fig. 2. Execution times for GTFS-Madrid-Bench in CSV format (Morph-KGC
with RML views and RMLMapper and RocketRML with RML+FnO), and
the LUBMM4OBDA benchmark (Morph-KGC over different tabular formats and
RDBMSs). Times are reported using a logarithmic scale.

public administrations (at the local, regional, and international levels) provide
these data on their own open data portals [41].

In NextProcurement17 we are developing an open, harmonized, and enriched
public procurement data platform for Europe. In this case, the extension of
Morph-KGC with RML views has been successfully used to transform Spanish
public procurement data available in Apache Parquet format (mainly obtained
from the national portal PLACE/PLASCP18, together with some regional con-
tracting platforms) into RDF according to the Open Contracting Data Standard
(OCDS) ontology [41]. Prior to the use of RML views, the RDF was being gen-
erated by applying programmatic preprocessing in Python, and then using base
sources in the mappings. The final public procurement service will be deployed
on an external server, and the fact of directly using Morph-KGC without addi-
tional preprocessing simplifies the deployment and its maintainability.

In the following we introduce two specific situations where RML’s base source
is not enough to generate the output RDF, and how RML views have been used
to overcome this.

5.1 Translating Spanish Codes to the Range Represented in the
OCDS Ontology

Spanish public procurement procedures are usually categorized following a nu-
meric typology19, whose codes are defined upon the European Directive 2004/18/CE20

17 http://nextprocurement-project.com/
18 https://contrataciondelestado.es
19 https://contrataciondelestado.es/codice/cl/2.04/

SyndicationTenderingProcessCode-2.04.gc
20 https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32004L0018

http://nextprocurement-project.com/
https://contrataciondelestado.es
https://contrataciondelestado.es/codice/cl/2.04/SyndicationTenderingProcessCode-2.04.gc
https://contrataciondelestado.es/codice/cl/2.04/SyndicationTenderingProcessCode-2.04.gc
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32004L0018


Boosting Knowledge Graph Generation from Tabular Data with RML Views 13

and by the IDABC (Interoperable Delivery of Pan-European eGovernment Ser-
vices to Public Administrations, Business and Citizens) Functional Require-
ments. However, these codes do not always have a direct mapping to the types
of procedures detailed in the OCDS ontology. In the code excerpt below (List-
ing 1.3) it is shown how this was preprocessed before, using Python scripting to
map the values in a Pandas DataFrame to the expected values.

Listing 1.3. Translating spanish codes to the OCDS ontology with Python.

tipos_contrato = { 1: "goods",

2: "services",

3: "works",

21: "services",

31: "works" }

df["Tipo␣de␣Contrato"] = df["Tipo␣de␣Contrato"].map(

tipos_contrato).fillna("other")

When we shifted to RML views, this mapping could be solved with the CASE
statement in the SQL query (Listing 1.4). A similar solution21 is exemplified in
the R2RML Recommendation, which until now was only possible for RDBs.

Listing 1.4. Translating spanish codes to the OCDS ontology with SQL.

SELECT NextProcurement .*,

CASE "Tipo␣de␣Contrato"

WHEN 1 THEN ’goods ’

WHEN 2 THEN ’services ’

WHEN 3 THEN ’works ’

WHEN 21 THEN ’services ’

WHEN 31 THEN ’works ’

ELSE ’other ’

END AS TipoContrato

FROM ’NextProcurement.parquet ’ AS NextProcurement

5.2 Handling Embedded Lists of Lots in Procedures

Public procurement procedures may involve several tasks of different types (e.g.,
when a school starts operating, both the new materials and vacancies for the
employees must be tendered). To facilitate organizations to apply only for the
parts of the service that they are interested in, public procurement procedures
are usually divided into lots. In our case, the input data associated with lots are
in the form of lists embedded in the cells of an Apache Parquet file. RML views
and Morph-KGC enable the processing of these lists by using unnesting, casting
and splitting operations, as shown in the code excerpt below (Listing 1.5).

Listing 1.5. Processing embedded lists of lots in procedures with SQL.

SELECT "Número␣de␣Expediente",

UNNEST("Lote":: DOUBLE []) AS Lotes ,

21 https://www.w3.org/TR/r2rml/#example-translationtable

https://www.w3.org/TR/r2rml/#example-translationtable


14 Arenas-Guerrero et al.

UNNEST(

(string_split

(replace("Número␣de␣Licitadores␣Participantes", ’

NULL’, ’0’)[2:-1], ’,’)

:: DOUBLE [])

::INT []) AS NumTenders

FROM ’NextProcurement.parquet ’

6 Related Work

The SPARQL query language has been extended in several works, such as
SPARQL-Anything [11], SPARQL-Generate [33] or Tarql [1], to generate RDF
KGs from tabular data. Similarly to SQL in RML views, SPARQL functions al-
low for data transformation using the GENERATE clause in SPARQL-Generate
and the CONSTRUCT query form in SPARQL-Anything (by overloading the
SERVICE clause) and Tarql (via the FROM clause). Complex joins are enabled
through nested GENERATE and CONSTRUCT clauses, but mixed content is
not supported. The main difference with respect to our work is that SPARQL-
based approaches use a query language over the target ontology, while RML
views use a query language over the tabular sources (these approaches are known
as local and global as view [34], respectively). Semantic web practitioners may
prefer these alternatives, since they are familiar with SPARQL, while data en-
gineers who are used to SQL may lean towards RML views.

Garćıa-González et al. [25] proposed using Shape Expresions [12] to map het-
erogeneous data to RDF. The Shape Expressions Mapping Language (ShExML)
relies on a data validation language instead of a query language. ShExML is
more limited regarding transformation functions, for which only matchers and
string operations are supported, and filtering or mixed content is not possible.
Also, limited join functionality can be achieved with shape linking and the JOIN
clause.

Szekely et al. [42] proposed the T2WML language to allow layouts beyond
the canonical tabular representation (one column for each variable). T2WML
maps on a cell-centric basis rather than the row-centric model of RML’s base
source. Although T2WML allows transformation functions, it does not support
joins between different tabular sources or mixed content. YAML is used to write
T2WML rules, similar to YARRRML [29], a popular human-readable serializa-
tion of RML.

As already discussed during the paper, several mechanism extending RML
have been proposed to increase the flexibility of the mapping language. RML has
been aligned to FnO [19] and FunUL [16], which define functions in a generic and
reusable way. While these approaches define functions within term maps, RML
views define them directly in the logical source. RML fields introduces a nested
iteration model to handle mixed-content, and the work presented in [36] proposes
the concatenation of path expressions using the mixed-syntax paths constructs.
RML+FnO and RML fields are now under the hood of the W3C Knowledge



Boosting Knowledge Graph Generation from Tabular Data with RML Views 15

Graph Construction Community Group22. Chaves-Fraga et al. [15] studied how
to efficiently load tabular sources to an RDBMs, and perform SPARQL-to-SQL
query translation to enable virtualization over tabular sources. This also allows
complex joins similarly to RML views by delegating on the RDBMS. However
it tackles virtualization, while we focus on the generation of the KG.

7 Conclusions and Future Work

This paper presents an open-source extension of Morph-KGC for KG generation
from tabular data with RML views. Our implementation enables transformation
functions, complex joins, and mixed content using SQL queries within RML
mappings. In this way, Morph-KGC can potentially boost the adoption of RML,
especially by data engineers, since they are usually more familiar with SQL than
with RML extensions used so far for these purposes.

To validate the capabilities of our implementation, we extended some R2RML
test cases for tabular data. We showed that our system significantly outperforms
state-of-the-art RML+FnO for transformation functions and that it is the only
one that allows complex joins over tabular sources. Furthermore, we demon-
strated how Morph-KGC and RML views are being applied in a real use case in
public procurement, replacing programmatic preprocessing.

We made publicly available (via Zenodo and GitHub) all the resources: the
RML tabular views test cases, the RML+FnOmappings for GTFS-Madrid-Bench
and the tabular data dumps and mappings for the LUBM4OBDA benchmark.
The system is under active development and outlining its road map, we have
already started working to support user-defined functions with RML+FnO and
we plan to enhance its usability allowing the YARRRML human-friendly serial-
ization of RML.

Acknowledgments

This work was funded partially by the project Knowledge Spaces: Técnicas
y herramientas para la gestión de grafos de conocimientos para dar soporte
a espacios de datos (Grant PID2020-118274RB-I00, funded by MCIN/AEI/
10.13039/501100011033).

References

1. Tarql: SPARQL for Tables (2019), https://tarql.github.io/
2. Apache Software Foundation: Apache ORC, https://orc.apache.org/
3. Apache Software Foundation: Apache Parquet, https://parquet.apache.org/
4. Arenas-Guerrero, J.: Evaluation of RML Tabular Views with GTFS-Madrid- Bench

(2022). https://doi.org/10.5281/zenodo.7389828
5. Arenas-Guerrero, J.: oeg-upm/morph-kgc (2022).

https://doi.org/10.5281/zenodo.5543552

22 https://www.w3.org/community/kg-construct/

https://tarql.github.io/
https://orc.apache.org/
https://parquet.apache.org/
https://doi.org/10.5281/zenodo.7389828
https://doi.org/10.5281/zenodo.5543552
https://www.w3.org/community/kg-construct/


16 Arenas-Guerrero et al.

6. Arenas-Guerrero, J.: RML Tabular Views Test Cases (2022).
https://doi.org/10.5281/zenodo.7389760

7. Arenas-Guerrero, J.: The LUBM4OBDA Benchmark for Tabular Sources (2022).
https://doi.org/10.5281/zenodo.7389705

8. Arenas-Guerrero, J., Chaves-Fraga, D., Toledo, J., Pérez, M.S., Corcho, O.: Morph-
KGC: Scalable knowledge graph materialization with mapping partitions. Semantic
Web (2022). https://doi.org/10.3233/SW-223135

9. Arenas-Guerrero, J., Iglesias-Molina, A., Chaves-Fraga, D., Garijo, D., Corcho,
O., Dimou, A.: Morph-KGCstar: Declarative generation of RDF-star graphs
from heterogeneous data. Submitted to Semantic Web (2023), https://www.

semantic-web-journal.net/system/files/swj3238.pdf

10. Arenas-Guerrero, J., Scrocca, M., Iglesias-Molina, A., Toledo, J., Pozo-Gilo, L.,
Doña, D., Corcho, O., Chaves-Fraga, D.: Knowledge Graph Construction with
R2RML and RML: An ETL System-based Overview. In: Proceedings of the 2nd In-
ternational Workshop on Knowledge Graph Construction. vol. 2873. CEUR Work-
shop Proceedings (2021), http://ceur-ws.org/Vol-2873/paper11.pdf

11. Asprino, L., Daga, E., Gangemi, A., Mulholland, P.: Knowledge Graph Con-
struction with a Façade: A Unified Method to Access Heterogeneous Data
Sources on the Web. ACM Transactions on Internet Technology (2022).
https://doi.org/10.1145/3555312

12. Boneva, I., Labra Gayo, J.E., Prud’hommeaux, E.G.: Semantics and Valida-
tion of Shapes Schemas for RDF. In: Proceedings of the 16th International Se-
mantic Web Conference. pp. 104–120. Springer International Publishing (2017).
https://doi.org/10.1007/978-3-319-68288-4 7

13. Chaves-Fraga, D., Corcho, O., Yedro, F., Moreno, R., Oĺıas, J., De La Azuela, A.:
Systematic Construction of Knowledge Graphs for Research-Performing Organiza-
tions. Information 13(12), 562 (2022). https://doi.org/10.3390/info13120562

14. Chaves-Fraga, D., Priyatna, F., Cimmino, A., Toledo, J., Ruckhaus, E., Cor-
cho, O.: GTFS-Madrid-Bench: A Benchmark for Virtual Knowledge Graph Ac-
cess in the Transport Domain. Journal of Web Semantics 65, 100596 (2020).
https://doi.org/10.1016/j.websem.2020.100596

15. Chaves-Fraga, D., Ruckhaus, E., Priyatna, F., Vidal, M.E., Corcho, O.: Enhancing
Virtual Ontology Based Access over Tabular Data with Morph-CSV. Semantic
Web 12(6), 869–902 (2021). https://doi.org/10.3233/SW-210432

16. Crotti Junior, A., Debruyne, C., Brennan, R., O’Sullivan, D.: An evaluation of up-
lift mapping languages. International Journal of Web Information Systems 13(4),
405–424 (2017). https://doi.org/10.1108/IJWIS-04-2017-0036

17. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language.
W3C Recommendation, World Wide Web Consortium (W3C) (2012), http://

www.w3.org/TR/r2rml/

18. De Meester, B., Maroy, W., Dimou, A., Verborgh, R., Mannens, E.: Declara-
tive Data Transformations for Linked Data Generation: The Case of DBpedia.
In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig,
O. (eds.) Proceedings of the 14th Extended Semantic Web Conference. pp. 33–
48. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-
58451-5 3

19. De Meester, B., Seymoens, T., Dimou, A., Verborgh, R.: Implementation-
independent function reuse. Future Generation Computer Systems 110, 946–959
(2020). https://doi.org/10.1016/j.future.2019.10.006

https://doi.org/10.5281/zenodo.7389760
https://doi.org/10.5281/zenodo.7389705
https://doi.org/10.3233/SW-223135
https://www.semantic-web-journal.net/system/files/swj3238.pdf
https://www.semantic-web-journal.net/system/files/swj3238.pdf
http://ceur-ws.org/Vol-2873/paper11.pdf
https://doi.org/10.1145/3555312
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.3390/info13120562
https://doi.org/10.1016/j.websem.2020.100596
https://doi.org/10.3233/SW-210432
https://doi.org/10.1108/IJWIS-04-2017-0036
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/
https://doi.org/10.1007/978-3-319-58451-5_3
https://doi.org/10.1007/978-3-319-58451-5_3
https://doi.org/10.1016/j.future.2019.10.006


Boosting Knowledge Graph Generation from Tabular Data with RML Views 17

20. Debruyne, C.: Supporting Relational Database Joins for Generating Literals in
R2RML. In: Proceedings of the 3rd International Workshop on Knowledge Graph
Construction. vol. 3141. CEUR Workshop Proceedings (2022), http://ceur-ws.
org/Vol-3141/paper7.pdf

21. Delva, T., Van Assche, D., Heyvaert, P., De Meester, B., Dimou, A.: Integrating
Nested Data into Knowledge Graphs with RML Fields. In: Proceedings of the
2nd International Workshop on Knowledge Graph Construction. vol. 2873. CEUR
Workshop Proceedings (2021), http://ceur-ws.org/Vol-2873/paper9.pdf

22. Dimou, A., Vander Sande, M.: RDF Mapping Language (RML). Tech. rep., World
Wide Web Consortium (W3C) (2022), https://rml.io/specs/rml/

23. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: RML: A Generic Language for Integrated RDF Mappings of Hetero-
geneous Data. In: Proceedings of the 7th Workshop on Linked Data on the Web.
vol. 1184. CEUR Workshop Proceedings (2014), http://ceur-ws.org/Vol-1184/
ldow2014_paper_01.pdf

24. Feria, S.C., Garćıa-Castro, R., Poveda-Villalón, M.: Chowlk: from UML-Based
Ontology Conceptualizations to OWL. In: Proceedings of the 19th Extended Se-
mantic Web Conference. pp. 338–352. Springer International Publishing (2022).
https://doi.org/10.1007/978-3-031-06981-9 20

25. Garćıa-González, H., Boneva, I., Staworko, S., Labra-Gayo, J.E., Lovelle,
J.M.C.: ShExML: improving the usability of heterogeneous data mapping
languages for first-time users. PeerJ Computer Science 6, e318 (2020).
https://doi.org/10.7717/peerj-cs.318

26. Goldstein, J., Larson, P.r.: Optimizing Queries Using Materialized Views:
A Practical, Scalable Solution. SIGMOD Record 30(2), 331–342 (2001).
https://doi.org/10.1145/376284.375706

27. Hartig, O.: Foundations of RDF* and SPARQL* (An Alternative Approach to
Statement-Level Metadata in RDF). In: Proceedings of the 11th Alberto Mendel-
zon International Workshop on Foundations of Data Management and the Web.
vol. 1912. CEUR Workshop Proceedings (2017), http://ceur-ws.org/Vol-1912/
paper12.pdf

28. Heyvaert, P., Chaves-Fraga, D., Priyatna, F., Corcho, O., Mannens, E., Ver-
borgh, R., Dimou, A.: Conformance Test Cases for the RDF Mapping Language
(RML). In: Proceedings of the 1st Iberoamerican Knowledge Graphs and Se-
mantic Web Conference. pp. 162–173. Springer International Publishing (2019).
https://doi.org/10.1007/978-3-030-21395-4 12

29. Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R.: Declarative Rules
for Linked Data Generation at Your Fingertips! In: Extended Seman-
tic Web Conference. pp. 213–217. Springer International Publishing (2018).
https://doi.org/10.1007/978-3-319-98192-5 40

30. Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G.D., Gutier-
rez, C., Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S., Ngomo, A.C.N.,
Polleres, A., Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S.,
Zimmermann, A.: Knowledge Graphs. ACM Computing Surveys 54(4) (2021).
https://doi.org/10.1145/3447772

31. Jozashoori, S., Vidal, M.E.: MapSDI: A Scaled-Up Semantic Data Integration
Framework for Knowledge Graph Creation. In: Proceedings of the Confederated
International Conferences. pp. 58–75. Springer International Publishing (2019).
https://doi.org/10.1007/978-3-030-33246-4 4

http://ceur-ws.org/Vol-3141/paper7.pdf
http://ceur-ws.org/Vol-3141/paper7.pdf
http://ceur-ws.org/Vol-2873/paper9.pdf
https://rml.io/specs/rml/
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
https://doi.org/10.1007/978-3-031-06981-9_20
https://doi.org/10.7717/peerj-cs.318
https://doi.org/10.1145/376284.375706
http://ceur-ws.org/Vol-1912/paper12.pdf
http://ceur-ws.org/Vol-1912/paper12.pdf
https://doi.org/10.1007/978-3-030-21395-4_12
https://doi.org/10.1007/978-3-319-98192-5_40
https://doi.org/10.1145/3447772
https://doi.org/10.1007/978-3-030-33246-4_4


18 Arenas-Guerrero et al.

32. Khayyat, Z., Lucia, W., Singh, M., Ouzzani, M., Papotti, P., Quiané-Ruiz, Jorge-
Arnulfo, J.A., Tang, N., Kalnis, P.: Fast and scalable inequality joins. The VLDB
Journal 26(1), 125–150 (2017). https://doi.org/10.1007/s00778-016-0441-6

33. Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL Extension for Generat-
ing RDF from Heterogeneous Formats. In: Blomqvist, E., Maynard, D., Gangemi,
A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) Proceedings of the 14th Extended
Semantic Web Conference. pp. 35–50. Springer International Publishing (2017).
https://doi.org/10.1007/978-3-319-58068-5 3

34. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Proceedings of
the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS. p. 233–246. Association for Computing Machinery (2002).
https://doi.org/10.1145/543613.543644

35. McKinney, W.: Data Structures for Statistical Computing in Python. In:
Proceedings of the 9th Python in Science Conference. pp. 56–61 (2010).
https://doi.org/10.25080/Majora-92bf1922-00a

36. Michel, F., Djimenou, L., Zucker, C.F., Montagnat, J.: Translation of Relational
and Non-Relational Databases into RDF with xR2RML. In: Proceedings of the
11th International Conference on Web Information Systems and Technologies.
vol. 1, pp. 443–454. SciTePress (2015). https://doi.org/10.5220/0005448304430454

37. Raasveldt, M., Mühleisen, H.: DuckDB: An Embeddable Analytical Database.
In: Proceedings of the 2019 International Conference on Management
of Data. p. 1981–1984. Association for Computing Machinery (2019).
https://doi.org/10.1145/3299869.3320212

38. RMLio: RMLMapper (2022), https://github.com/RMLio/rmlmapper-java
39. Şimşek, U., Kärle, E., Fensel, D.: RocketRML - A NodeJS implementation of a

use-case specific RML mapper. In: Proceedings of the 1st International Workshop
on Knowledge Graph Building. vol. 2489, pp. 46–53. CEUR Workshop Proceedings
(2019), http://ceur-ws.org/Vol-2489/paper5.pdf

40. Sitt Min, O., Gerald, H., Ben, D.M., Anastasia, D.: RMLStreamer-SISO: An RDF
Stream Generator from Streaming Heterogeneous Data. In: Proceedings of the
21th International Semantic Web Conference, ISWC. pp. 697–713. Springer Inter-
national Publishing (2022). https://doi.org/10.1007/978-3-031-19433-7 40

41. Soylu, A., Corcho, O., Elvesæter, B., Badenes-Olmedo, C., Blount, T.,
Yedro Mart́ınez, F., Kovacic, M., Posinkovic, M., Makgill, I., Taggart, C., et al.:
TheyBuyForYou platform and knowledge graph: Expanding horizons in pub-
lic procurement with open linked data. Semantic Web 13(2), 265–291 (2022).
https://doi.org/10.3233/SW-210442

42. Szekely, P., Garijo, D., Bhatia, D., Wu, J., Yao, Y., Pujara, J.: T2WML: Table To
Wikidata Mapping Language. In: Proceedings of the 10th International Conference
on Knowledge Capture. p. 267–270. Association for Computing Machinery, New
York, NY, USA (2019). https://doi.org/10.1145/3360901.3364448

43. Van Assche, D., Delva, T., Haesendonck, G., Heyvaert, P., De Meester, B., Di-
mou, A.: Declarative RDF graph generation from heterogeneous (semi-)structured
data: A systematic literature review. Journal of Web Semantics 75, 100753 (2023).
https://doi.org/10.1016/j.websem.2022.100753

44. Villazón-Terrazas, B., Hausenblas, M.: R2RML and Direct Mapping Test Cases.
W3C Note, World Wide Web Consortium (W3C) (2012), http://www.w3.org/TR/
rdb2rdf-test-cases/

https://doi.org/10.1007/s00778-016-0441-6
https://doi.org/10.1007/978-3-319-58068-5_3
https://doi.org/10.1145/543613.543644
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5220/0005448304430454
https://doi.org/10.1145/3299869.3320212
https://github.com/RMLio/rmlmapper-java
http://ceur-ws.org/Vol-2489/paper5.pdf
https://doi.org/10.1007/978-3-031-19433-7_40
https://doi.org/10.3233/SW-210442
https://doi.org/10.1145/3360901.3364448
https://doi.org/10.1016/j.websem.2022.100753
http://www.w3.org/TR/rdb2rdf-test-cases/
http://www.w3.org/TR/rdb2rdf-test-cases/

	Boosting Knowledge Graph Generation fromTabular Data with RML Views

