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Abstract. Knowledge graphs have become essential for integrating data
from heterogeneous sources powering intelligent applications. Integrat-
ing data from various sources often results in incomplete knowledge that
needs to be enriched based on custom inference rules. Handling a large
number of facts requires a scalable storage layer that must be seamlessly
integrated into the reasoning algorithms to guarantee efficient evalua-
tion of rules and query answering over the knowledge graph. To this end,
we present SemReasoner, a comprehensive, scalable, high-performance
knowledge graph store and rule-based reasoner. SemReasoner includes a
deductive reasoning engine and fully supports document store function-
ality for JSON documents. SemReasoner’s modular architecture is easy
to extend and integrate into existing IT landscapes and applications. We
evaluate SemReasoner against the state-of-the-art rule-based reasoning
engines using test cases from OpenRuleBench. The results show that
SemReasoner outperforms existing engines in most test cases.

Keywords: SemReasoner · OO-Logic · Rules · Knowledge Graph Store
· Triple Store · Reasoner.

1 Introduction

In recent years knowledge graphs have become essential for powering intelligent
applications like Siri or Alexa. A knowledge graph is a vast semantic net repre-
senting entities and their relationships [11], integrating data from heterogeneous
sources that are often incomplete. Therefore, in many applications (e.g., data
integration or information extraction), it is essential to infer implicit knowledge
based on the given statements using rules (so-called inference rules). Rules al-
low the decoupling of the domain logic from the underlying application code.
The logic not hardcoded within an application but represented by rules is easily
exchangeable when needed allowing applications to be much more generic. Be-
sides, the behavior of applications can be defined in a low-/no-code way using
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rules. Additionally, integrating the logic into the model makes the queries much
shorter and more straightforward.

The importance of rules for knowledge graphs is also visible when following
the developments in recent years. Many new rule engines [6,9,19] have been de-
veloped. For a rule engine to be broadly adopted, it is essential to provide simple
and well-known APIs to access and manage the data stored within it. Developers
unfamiliar with the W3C recommendations should be able to integrate a rule en-
gine into their system architecture. But, a semantic web expert should also have
full expressivity when using the rule engine. Building a bridge between develop-
ers’ technologies, formats, query languages, and the W3C recommendations is
essential.

This paper presents SemReasoner, a high-performance knowledge graph store
and rule-based reasoner. SemReasoner is used successfully in several industrial
projects powering intelligent applications.

SemReasoner provides a comprehensive, scalable, and high-performance de-
ductive database. It stores the data in the form of triples and provides Horn logic
with negation as well as OO-logic [1] (a successor of F-logic [15]) for defining
rules. Additionally, SemReasoner fully supports document store functionality
and allows returning JSON documents in their initial structure without recreat-
ing them. Based on SemReasoner, ontology-based applications can be developed
which offer the following advantages:

– The shared meaning (semantics) of information in a knowledge model

– The capturing of complex relationships with the help of rules

Rules allow for modeling the know-how and the business logic separately
from the execution logic. Hence, users can flexibly adapt and extend the ap-
plication logic without modifying code. SemReasoner is mainly accessed using
OO-logic queries, but GraphQL, a query language simplifying developers’ ac-
cess, is also supported. Furthermore, we are currently working on supporting
SPARQL queries.

The remainder of the paper is structured as follows. Section 2 will lay the
foundations to follow the presentation in this paper. Afterward, Section 3 high-
lights SemReasoner’s key characteristics and gives insights into use cases relying
on it. SemReasoner’s modular architecture is presented in Section 4. Then, we
present the evaluation against the state-of-the-art rule engines (Section 5). The
related work section offers a comparison with those engines (Section 6). Finally,
we conclude the paper and give an outlook on the future work in Section 7.

2 Background

SemReasoner provides two languages for querying, namely OO-logic and GraphQL,
and for verifying the data, JSON Schema is supported.
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OO-logic [1] is a successor of F-Logic [2,15]. It combines the advantages of con-
ceptual modeling from object-oriented frame-based languages with the declara-
tive style, compact and simple syntax, and the well-defined semantics of a logic-
based language (based on first order logic). OO-logic supports typing, meta-
reasoning, complex objects, methods, classes, inheritance, rules, queries, mod-
ularization, and scoped inference. It can be translated to Horn logic with non-
monotonic negation, a subset of predicate logic with highly efficient reasoning
algorithms. It is “Turing complete” (computationally universal), which means
that everything that can be expressed by a computer can also be expressed in
OO-logic. This is very important for industrial applications. For example, use
cases requiring recursive functions cannot be directly expressed in a language
like OWL. Further, OO-logic is more lightweight than F-Logic. For schema def-
inition, no special constructs are available. Instead, schema definition is done
precisely the same way as the definition of instances. For classes, properties are
defined and used in their instances, and properties of classes are defined in the
same way. This clears the syntax given for F-Logic without losing functionality
and makes it much easier to describe ontologies and rules. Our commercial expe-
rience shows that OO-logic is an excellent language for industrial applications.
For better support of knowledge graph use cases, OO-logic has been extended by
powerful path expressions, for instance, to recursively follow edges in the graph
and thus retrieve whole paths.

GraphQL JSON objects may be queried using GraphQL4. GraphQL is a query
language to retrieve data from a data store. Usually, GraphQL is used as an
alternative to an ordinary REST call. It allows retrieving the relevant informa-
tion only instead of a sometimes extensive JSON object. As its syntax is closely
related to JSON, it fits very well with JSON. GraphQL allows simple queries
but is less powerful than OO-logic queries. SemReasoner supports the GraphQL
constructs like aliases, unions, fragments, nested fragments, inline fragments,
arguments, variables, default variables, and directives (@include, @skip). Fur-
thermore, introspection and mutation are supported, and arguments can contain
OO-logic paths. A GraphQL response is returned as a JSON document with the
same structure as the query structure. Furthermore, only properties specified in
the query are returned.

JSON Schema is used for verifying JSON objects. The relation between a JSON
schema5 and a JSON object is given by the class (@type) of the JSON object.
The name of the class is the property value of the @id property of the schema. An
extension to JSON Schema is the support for inheriting properties from super-
schemas [3]. The relation of a sub-schema to its super-schema is expressed using
the property @subClassOf. Additionally, constraints can be expressed using OO-
logic by using the @constraints property. In SemReasoner schema objects are
stored as JSON objects. Whenever a schema is available for a given type, every
added instance of that type is verified against this schema.

4 https://graphql.org
5 https://json-schema.org/

https://graphql.org
https://json-schema.org/
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3 Key Characteristics and Use Cases

We present the key characteristics (Section 3.1) together with industry-related
use cases (Section 3.2) in the following.

3.1 Key Characteristics

Document store SemReasoner’s JSON API stores added JSON documents with
their initial structure. This allows retrieving the documents quickly without re-
constructing them from triples. Even more important, the original structure is
kept, which can not be guaranteed when recreating them from triples.

Persistent storage The persistent storage layer stores the triples in B+ trees.
A shadow implementation of those B+ trees allows safe transactions. This im-
plies facts added or deleted during a transaction only modify shadows of the
B+ tree nodes. Further, SemReasoner partitions the extensional database verti-
cally using the property names, i.e., each property has its relation. For instance,
abc[hasDollarPrice:5] is stored in a B+ tree containing ternary tuples only. The
member relation (member of a class) is partitioned using the class names, i.e.,
each class has its member relation. For instance, abc:Product is stored in a B+
tree containing binary tuples only. An additional horizontal partitioning splits
the database into subgraphs. In that case, the B+ trees have tuples with an
additional argument: the subgraph identifier.

Reasoning Join operations are used instead of resolution for evaluating rules.
Both Merge6 joins and Nested Loop7 joins are implemented and a heuristic
chooses one of them for each join operation. The intermediate rule results are
kept in the main memory, and the indices are created dynamically. For B+ rela-
tions, those are B+ trees as well. For main memory relations, those are realized
either by specialized hash tables or AVL-trees, decided based on a heuristics.
Cross products are managed differently, they are not executed. Relations are
not joined and the cross product is forwarded to the next operator. The same
holds for join operations concerning two triple sets, which are known to have a
one-to-one relation. Constants in rule literals are used as additional filters for
join operations (lazy filtering). Lazy projection means that projections are not
applied immediately but during the next join operation. Rules with a single head
literal and a single body literal do not create intermediate results. All those opti-
mizations allow fast evaluation of rules with huge sets of facts in the extensional
database.

Transactions SemReasoner is transactional, i.e., it provides snapshot and long
transactions. Snapshot transactions allow clients to add or remove facts and
pose queries without influencing parallel accessing clients. The changes become

6 https://sqlserverfast.com/epr/merge-join/
7 https://sqlserverfast.com/epr/nested-loops/

https://sqlserverfast.com/epr/merge-join/
https://sqlserverfast.com/epr/nested-loops/
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visible to other clients only after committing the transaction. Such transactions
can also be rolled back, leaving the original state in the extensional database
as before the transaction. A rollback means that the changes in the shadow
nodes are ignored, and the shadow nodes are freed up. A commit switches to the
shadow nodes, and the original nodes are freed up. Long transactions are open
for a long time, e.g., days, and they still allow parallel accessing clients to pose
queries. Those queries are independent of the changes in the long transaction.
The shadow implementation again accomplishes this. Long transactions create
shadow nodes only, thus not affecting the use of the original nodes.

3.2 Use Cases

SemReasoner has been successfully used in industrial projects and applications.
adesso SE8, a listed consulting and IT service company with more than 5800
employees, employs SemReasoner in various projects and products. Some of those
we describe in the following.

– adesso insurance solutions, a subsidiary of adesso, uses SemReasoner at
the core of an in/sure workflow & in/sure workplace product. The business
architecture is completely described with an ontology, and rules represent
decisions. This is an excellent example of a no-code/low-code system, where
ontologies describe all the concrete domain-specific issues.

– Banking is one line of business inside adesso using SemReasoner to ana-
lyze embargo restrictions. Large banks process millions of SWIFT payment
messages daily with real-time response requirements. OO-logic rules describe
conditions when a payment message violates an embargo, and SemReasoner
evaluates those conditions in real-time. This use case shows the high perfor-
mance of SemReasoner

Further, SemReasoner is used in Onlim9, a leading conversational AI platform
provider in the DACH-Region, to host knowledge graphs and power intelligent
applications like chatbots and voice assistants.

4 SemReasoner’s Architecture

SemReasoner combines a graph store with a deductive reasoning engine and
comes with a search index for efficiently searching ontologies and documents. The
architecture is optimized to use SemReasoner as a runtime system in semantic
applications or at the core of ontology-based services. Therefore, SemReasoner
comes with well-documented APIs, extension possibilities, and interfaces10. Fig-
ure 1 presents an overview of SemReasoner’s architecture components.

8 https://www.adesso.de/en/
9 https://onlim.com/

10 see https://kev-ang.github.io/SemReasoner/

https://www.adesso.de/en/
https://onlim.com/
https://kev-ang.github.io/SemReasoner/
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Fig. 1. SemReasoner’s architecture

4.1 Storage Layer

The storage layer consists of three parts, the Extensional Database (EDB), Sym-
bol Table, and Importer. While the first two are used for storing the data, the
third imports the data from various formats into the EDB and Symbol Table.

Facts are separated from the rules and stored in the EDB. This EDB may
either be configured to reside in the main memory (memory mode) or in its
graph store (persistent mode)11. Additionally, a mixed mode keeps as much data
as possible in the main memory and swaps (remove data from memory and
load data from disk) whenever needed. Different data structures are used for
the two modes. The graph store (persistent mode) is based on B+ trees [10].
Indices are generated and stored on disk for supporting joins and negations in
reasoning. This persistent layer ensures rapid loading, rollback, parallel snapshot
transactions, and backups. It has been tested for up to 34 billion triples while
loading a billion facts in roughly 3.5 hours on an ordinary PC. The loading time
grows linearly with the number of triples. Binary trees (AVL trees) are used as
the central data structure for the in-memory mode.

The storage of symbols is separated from the storage of triples. Symbols are
encoded and stored within the Symbol Table. Therefore, the triples contain the
codes of the symbols only. This allows fast comparisons of triples because only
codes have to be compared. The encoding of symbols is done during the loading
of the facts. The symbols are stored as B+ trees in the persistent mode, whereas
hash tables are used for the in-memory mode.

Several importers are provided to load the data into memory or the graph
store. SemReasoner currently supports the formats JSON, OO-logic facts, Raw
(files containing triples, with every element of a triple in a different line) and all
formats supported by the Jena12 and Rio (RDF4J)13. In addition, SemReasoner

11 For performance reasons, the first configuration is preferable.
12 https://jena.apache.org/documentation/io/
13 https://rdf4j.org/

https://jena.apache.org/documentation/io/
https://rdf4j.org/
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provides an interface for implementing custom importers to add support for
other formats.

The storage layer is seamlessly integrated into the reasoning algorithms. It
thus dramatically increases the performance compared to reasoners with a de-
coupled storage layer.

4.2 Logic Layer

Intensional DB, Built-Ins, Data Types, and Rewriters form the logic layer, con-
taining the domain logic.

Intensional DB Rules and queries are located in the Intensional database. They
are arranged in a graph describing the dependency relation of the rules. A rule A
is dependent on another rule B if the head atom of B unifies with one of the body
literals of A. Cycles and double-connected components can be computed with
the appropriate graph algorithms. Thus stratification of rules can be determined
for non-monotonic negation. In addition, this allows deciding quickly which rule
can contribute to the answer and which rules can be omitted.

Built-Ins Some aspects cannot be easily described using logic. For example, com-
plex mathematical algorithms should be described procedurally instead. Sem-
Reasoner can easily be extended with such procedural algorithms. Within OO-
logic, these procedural attachments are called built-ins. They may be used in-
side rules or queries using predicate logic literals. For example, all mathematical
built-ins are internally given in the same way. If we want to multiply numbers,
we could use the multiply built-in ( mult) that can take two numbers as input
and returns the output into a variable: mult(2,3,?Y), which results in ?Y=6.
Built-ins are identified by a leading underscore (“ ”). The extension of such a
built-in is not a given set of facts. Instead, the extension is computed by an
algorithm. Built-ins are written in Java, are compiled against the SemReasoner
code, and are registered as new built-ins. Then, they are subsequently available
within queries and rules. Additionally, SemReasoner supports action built-ins.
Action built-ins occur in the head of a rule and perform actions like writing a file
or sending an e-mail. So far, SemReasoner comes with more than 200 built-ins,
including the math and string functions from Java.

Data Types are assigned to facts and define how to interpret the data14. For
example, adding two facts heavily depends on the assigned data type. Adding
two integers results in the sum, whereas adding two strings is interpreted as
concatenation. SemReasoner comes with a predefined set of data types consisting
of Boolean, Calendar, Double, Duration, Float, Integer, Long, and String. As for
the built-ins and the importers, extending the given set of data types is possible
by implementing a given interface.

14 https://foldoc.org/type

https://foldoc.org/type
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Rewriter Rewriters are used for optimizing the set of rules during the reasoning
process. Optimizing the rules before evaluating them is essential for an efficient
reasoning process. Without those optimizations, no real-time responses would be
possible in many cases. The optimization is done by modifying the rules while
ensuring that the revised rules evaluate the same answer as the original rules.
An example is the magic set rewriter (see Section 4.3). SemReasoner comes with
predefined rewriters, e.g., eliminating duplicate literals in rules or rewriting rules
into SQL statements when integrating SQL databases.

4.3 Reasoning Engine

The reasoning engine operates on the existing facts stored in the Extensional DB.
It uses the logic layer for inferring new knowledge or answering given queries.
In the following, we will elaborate on the inference algorithms used. Afterward,
the reasoning process is described, and finally, we briefly present SemReasoner’s
materialization abilities.

Inference Algorithms In the kernel of SemReasoner, there are two reasoning
methods available: a bottom-up reasoner (also called semi-naive evaluation, or
forward chaining reasoner) [23], and a top-down reasoner based on the magic-set
technology [7] (simulated backward-chaining reasoner).

A bottom-up reasoner (forward-chaining reasoner) takes the given facts, ap-
plies the rules, and creates derived facts. Afterward, the rules are applied again
to derive more facts, including the derived facts of the first rule evaluation. This
process continues until no new facts can be derived. Bottom-up reasoning is a
simple method with the disadvantage that many (intermediate) facts are gen-
erated, which are generally unnecessary for answering the query. On the other
hand, top-down reasoning sometimes provides so much overhead that this simple
reasoning strategy performs best of all.

Magic set reasoning modifies the rules and processes them using a bottom-up
reasoner. The rule transformation process creates a magic fact and a new rule
from the given rule. This transformation directly brings a restricting ground
term to the rule to be evaluated. The introduced ground term restricts the
intermediate results at the bottom of the rule graph. Transforming the rules
and processing the resulting rule set in a bottom-up way reduces the number
of intermediate results that do not contribute to the answer. By creating these
rules, we observe a trade-off between this reduction effect and the additional
performance loss for magic set reasoning. We have seen queries better evaluated
in a purely bottom-up fashion and others better evaluated by magic sets.

The Reasoning Process A query is processed in several successive steps (see
Figure 2). First, the query is parsed and compiled (OO-logic compiling) into an
internal data structure. Afterward, all rules that may contribute to the query
are selected (Selecting rules) from all the rules stored in the Intensional DB. The
resulting rules are then optimized by so-called rewriters (Rule rewriting).
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Fig. 2. Query processing in SemReasoner

Then a rule compiler creates a so-called operator net (Rule compiling). An
operator net is a low-level representation of the operations needed for processing
the set of rules. Such an operator net contains operations like join, match, access
to the EDB, projection, operations for built-ins, and operations for connectors.
Move operations move tuples to another node, collectors store intermediate re-
sults, and distributors distribute tuples to several other nodes.

Such an operator net is purely data flow-oriented, with every operator per-
forming its operation and sending the results to the successor nodes.

The whole query processing is multi-user-capable. This means multiple users
can send queries simultaneously, which are processed in parallel.

Materialization The same reasoning methods (bottom-up and top-down) can
be used to materialize inferences. This means that rules are evaluated directly
after loading. The results are stored in the internal triple store, which means
that, during query evaluation, these facts have to be accessed and retrieved only
so that no evaluation takes place during query time. This drastically improves
response times but may also increase the amount of stored data. SemReasoner
provides functions for incrementally materializing models. Suppose a new triple
is added/deleted to/from the model. Then, the materialization process must only
be repeated for a small subset of the model rather than for the entire model.
Materialization for the SemReasoner can be enabled when needed. Typically, it
is used without materialization.

4.4 OO-logic Compiler

The OO-logic compiler parses incoming rules and queries by using ANTLR15

(ANother Tool for Language Recognition). This parser builds and walks parse
trees. Based on the resulting parse tree, the internal Java representation of the
given rules and queries is compiled. Compiling rules into the internal Java rep-
resentation includes transformations for exceptional cases. Rules may contain

15 https://www.antlr.org/

https://www.antlr.org/
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several heads and an OR operation in the body. For such cases, the OO-logic
compiler performs a lightweight version of Lloyd-Topor transformation [18]. This
transformation compiles such a complex rule into several Horn rules. Another ex-
ceptional case is aggregations, usable in rules and queries, which are transformed
into several intermediate rules.

4.5 API

SemReasoner provides three ways to integrate it into an application. Those Java
APIs allow adding/removing facts and sending OO-logic queries to be evaluated.
Furthermore, the APIs allow adding built-ins, data types, importers, and rules.
In the following, we will briefly introduce the three APIs Deductive Database,
JSON Deductive Database, and Streaming Database.

Deductive Database The Deductive Database is all about OO-logic. OO-logic
facts and OO-logic rules are managed, and OO-logic queries can be posted. OO-
logic facts are compiled into internal triples or quads (if a context is provided).
OO-logic rules and queries are stored in their internal Java representation. This
API is transactional, i.e., it provides snapshot and long transactions (see Section
3.1 for details). The deductive database is a client to the data, i.e., several
deductive databases can be used in parallel for the same core.

JSON Deductive Database SemReasoner provides a particular API for stor-
ing and retrieving JSON objects. JSON objects can be used together with logic
rules and queried as a whole or specific parts using OO-logic queries. A signif-
icant advantage of the JSON API is its document store ability. JSON objects
added to SemReasoner are stored as a whole with their original structure. There-
fore, the JSON object is encoded and stored in the Symbol Table, and the code
is then stored in a separate JSON table. Further, the JSON Deductive Database
converts the JSON objects into triples. It adds the symbols to the Symbol Ta-
ble and the triples consisting of the symbol codes into the Extensional DB. For
verifying JSON objects, SemReasoner supports JSON schemas.

Streaming Database The standard way to use SemReasoner is to fill it with
ontologies, ontology instances, and rules and pose queries answered by the sys-
tem. This is similar to the way a database is used. For complex event processing
(stream-based reasoning) the system is filled with ontologies, instances, rules,
and queries. External events are streamed into SemReasoner, creating new in-
stances which are added to the set of instances, and these events cause the
stored queries to come up with new answers. SemReasoner does this incremen-
tally. Adding a new instance does not mean that the full original query must
be evaluated. Instead, the query evaluation considers the previously evaluated
partial results. Only an incremental effort is necessary to derive the additional
answers.
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5 Evaluation

This section evaluates SemReasoner against state-of-the-art rule engines using
the RUBEN [4] framework. RUBEN is a Rule Engine Benchmarking Frame-
work with a predefined set of test cases from the OpenRuleBench [17]. Due to
the limited space, we show only a selected test case for each category Open-
RuleBench provides. This section first presents the experimental setup, then the
methodology, and finally, the evaluation results.

Experimental Setup RUBEN was hosted on a server with an Intel® Core™
i9-9900K Octa-Core, 8 Cores / 16 Threads, 3.60 GHz Base Frequency, 5.00 GHz
Max Turbo Frequency processor, 64GB RAM, and Debian GNU / Linux 10. The
memory was limited to 60GB to evaluate the various rule engines.

We selected rule-engines that purely evaluate rules during query evaluation
time and rule-engines materializing the rules upfront16.

– No materialization - Apache Jena (4.4), SemReasoner, and Stardog (8.2.2)
– Materialization - RDFox (6.1), SemReasoner (5.6.7), and VLog (0.8.0)

Apache Jena and Stardog are rule engines evaluating the rules during query
time. Further, for those two rule engines, there is no possibility of materializing
the rules upfront. Rule engines entirely relying on materialization are RDFox
and VLog. In contrast to the selected engines supporting either materialization
or no materialization, SemReasoner can be configured to operate in one or the
other mode. Therefore, SemReasoner is placed in both categories and evaluated
against both types of engines.

Methodology RUBEN is a Java framework providing an interface to be im-
plemented for evaluating rule engines. The data and rules need to be manually
converted into the format of the particular rule engine. Each test case contains
a file for the facts, a rule file, and a file with queries. Then, the materialization
(if used) and afterward, the query is evaluated three times with a timeout of 15
minutes for each evaluation. The evaluation results are then used to calculate the
average time for materialization and query response and the standard deviation.

For the scope of this paper, we have chosen the following three test cases
from the OpenRuleBench17:

– Large join tests - Join1 - non-recursive tree of binary joins relying on
250000 facts.

– Datalog recursion - same-generation - find all siblings in the same gen-
eration using cyclic and acyclic data with a data size of 24000.

– Stratified negation - same-generation - modified same-generation prob-
lem using cyclic data with a data size of 24000.

16 see Section 6 for a detailed description of the rule-engines.
17 For a full list and detailed description of those test cases consider [17]
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Those test cases were selected based on the ability of the given rule engines.
All rule engines can execute the selected test cases for the large join tests and
datalog recursion. For example, some rule engines do not support n-ary predi-
cates, which prevents them from evaluating the Join2 test case from the Open-
RuleBench. Jena and Stardog do not support negation. Therefore, no results are
shown for the negation test case for both rule engines.

Results For the presentation of the evaluation results, Table 1 shows the results
of the engines without materialization. Further, in Table 2 a comparison of en-
gines doing materialization is shown. The test cases for all engines were executed
three times. After each run, the engines were restarted, and the data reloaded.
Then, we calculated the average materialization time or query response time. For
the non-materialized engines, we consider the query response time. In contrast,
for engines running materialization, we only consider the materialization time as
the query response time is the time for accessing the precomputed data, which
does not give any essential insights. Besides the average of the materialization
or query response time, we calculated the standard deviation. All times in the
tables are given in milliseconds. The first time is the average materialization or
query response time, and the standard deviation is given in brackets.

Engine Join1 Datalog Recursion

a b1 b2 Cyc No Cyc

Jena timeout timeout 51,134 timeout timeout
Sem-
Reasoner
(Memory)

46,547.00
(1,420.65)

18,638.67
(299.95)

2,774.67
(104.51)

2,330.67
(85.99)

2,270.00
(89.37)

Sem-
Reasoner
(Persistent)

96,903.67
(1,896.41)

37,542.33
(500.44)

8,103.67
(148.29)

3,325.67
(48.22)

3,257.00
(54.74)

Stardog Exception
419,156.67
(25,884.61)

3,366.00
(253.15)

Error Error

Table 1. Evaluation results not materialized (average query response time in ms, the
standard deviation in ms in brackets, and the fastest times are marked bold)

Jena and Stardog do not support negation in rules. Therefore, for the non-
materialized engines, we left out the negation test. Due to the limited space,
we only show the results of the queries without binding18. Only the bottom-up
reasoning algorithm for SemReasoner was used, as the top-down approach only
makes sense for queries with bindings. Comparing the results of the Join1 test,

18 for more results and the benchmarking data check https://github.com/kev-ang/

SemReasoner and the ESWC branch in https://github.com/kev-ang/RUBEN.

https://github.com/kev-ang/SemReasoner
https://github.com/kev-ang/SemReasoner
https://github.com/kev-ang/RUBEN
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SemReasoner is the fastest for the three given queries. A too large result causes
the exception thrown by Stardog for the query a. For the Datalog Recursion,
Stardog did not deliver a correct result, and the logs showed that the rule is not
supported19. Out of the three rule engines, the open-source implementation of
Jena either times out or is always the slowest. Jena delivers only a result for the
b2 query in one run. Therefore, no standard deviation can be calculated.

Engine Join1 Datalog Recursion Negation

Cyc No Cyc

RDFox - - - -
SemReasoner
(Memory)

18,157.33
(991.95)

1,733.00
(99.06)

1,611.00
(91.02)

45,353.67
(2,796.67)

VLog
518,676.22
(369.55)

24,245.67
(78.68)

21,467.00
(54.11)

9,135.00 (7.94)

Table 2. Evaluation results materialized (average materialization time in ms, the stan-
dard deviation in ms in brackets, and the fastest times are marked bold)

Besides evaluating rules during the query evaluation, SemReasoner supports
materialization. SemReasoner was run in the MEMORY mode for this part of the
evaluation using the bottom-up reasoning algorithm. This configuration was cho-
sen as it is comparable to how the other engines run the reasoning. Table 2
presents the performance comparison between engines supporting materializa-
tion. SemReasoner supports parallel materialization and is, therefore, faster than
VLog. SemReasoner’s speed-up compared to VLog reaches a factor between 13
and 28 for the Join1, Cyc and No Cyc test of Datalog Recursion. However, VLog
is nearly five times faster for the negation. This seems to be a terrible use case for
our implementation of negation and must be investigated in detail. SemReasoner
is the slowest of the evaluated engines for the negation test case. Unfortunately,
for RDFox, we did not get approval for the benchmarking results before the
submission deadline. Therefore, we replaced the numbers by dashes in Table 2.

6 Related Work

OO-logic is a successor of F-logic and comes with the same expressivity. In [14],
the author elaborates on the relationship of F-logic and Description Logics (DLs).
F-logic is computationally complete, not so DLs. While F-logic’s expressivity
allows simple specifications of many problems beyond the expressivity of DLs,
F-logic knowledge bases can not provide computational guarantees. But, those
problems can be neglected because the exponential complexity of problems in
DLs provides little comfort in practice.

19 https://docs.stardog.com/inference-engine/#known-issues

https://docs.stardog.com/inference-engine/##known-issues
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Further, many computational problems in F-logic are decidable within poly-
nomial time. Those are especially all queries without function symbols and a
large subclass of queries beyond DLs’ expressive power. Further, there are knowl-
edge bases with decidable query answering, including function symbols. DLs are
more flexible regarding representing existential information or admitting dis-
junctive information to the knowledge base [15].

The following briefly introduces and discusses the rule engines from the eval-
uation section and includes GraphDB and the Fact++ reasoner.

GraphDB uses rules in the format and semantics analogous to R-entailment20.
R-entailment is less expressive than DLs but improves the complexity and adds
meta-modeling expressivity [13]. The reasoning engine inside GraphDB is called
TRREE, performing forward-chaining reasoning relying on total materialization.
All data is stored in files in the storage directory.

FaCT++ is a DL reasoner based on the tableaux decision procedure [22]. It
comes with a persistent and incremental reasoning mode [21]. The persistent
mode stores the internal state, and precomputed inferences and reloads them
when needed. Further, the incremental reasoning mode avoids reloading and
reclassifying the ontology for a few changed axioms but approximates the affected
subsumptions. However, it does not have an integrated persistency layer but does
the reasoning in memory.

Jena is an open-source framework for Semantic Web applications21. Jena comes
with a triple store and inference support by various reasoning engines. For this
paper, only the general-purpose rule engine22 is of interest. The reasoning engine
provides forward chaining, backward chaining, and a hybrid mode. Further, the
rule engine provides built-in functions like string and mathematical functions
that can be extended by the user [20]. The rule engine comes with its own
rules called Jena rule, which is comparable to Notation3. Explicitly stating the
expressivity of N3Logic is difficult [8]. It is more expressive than Datalog but
less expressive than FOL, and, unlike DL, it is not decidable [8].

RDFox is a main-memory RDF store supporting parallel Datalog reasoning re-
lying on materialization [19]. It comes with a highly efficient parallel reasoning
algorithm and efficient handling of owl:sameAs statements. Further, RDFox sup-
ports datalog rules, a subset of horn logic rules.

Stardog is an Enterprise Knowledge Graph Platform23. Stardog does not ma-
terialize inferences but evaluates rules at query time, allowing maximum flexi-
bility. Further, it comes with its rule language based on SPARQL and supports

20 https://graphdb.ontotext.com/documentation/10.0/reasoning.html#

rule-format-and-semantics
21 https://jena.apache.org/
22 https://jena.apache.org/documentation/inference/#rules
23 https://www.stardog.com/

https://graphdb.ontotext.com/documentation/10.0/reasoning.html#rule-format- and-semantics
https://graphdb.ontotext.com/documentation/10.0/reasoning.html#rule-format- and-semantics
https://jena.apache.org/
https://jena.apache.org/documentation/inference/#rules
https://www.stardog.com/
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SWRL rules [12]. The expressivity of SPARQL is equivalent to recursive safe
Datalog with negation [5]. SWRL is a combination of OWL-DL and OWL-Lite,
sublanguages of OWL and Unary/Binary Datalog RuleML [12], allowing posi-
tive, function-free horn clauses [16]. Additionally, built-in functions like string
or mathematical functions are supported.

Focusing on the supported rules and especially the procedural extension of
those, SemReasoner’s rule language is more expressive than the rule languages
of the presented rule engines. The presented rule engines rely on DL or Datalog,
which are Horn Logic formulas without functions and are less expressive than
SemReasoner’s rule language. Besides SemReasoner, only GraphDB provides an
integrated persistency layer. The other engines rely on a decoupled storage layer
or operate only in memory. RDFox, for example, needs to have all data available
in memory. SemReasoner provides forward- and (simulated) backward-chaining.
From the other engines, only Jena also provides both. The others either rely on
forward- or backward-chaining. Besides, SemReasoner supports materialization
as well as reasoning during query-time. In contrast, GraphDB, RDFox, and VLog
fully rely on materialization and Jena and Stardog on reasoning during query-
time. Further, SemReasoner has an integrated document store, while others need
to rely on external system integrations. Many use cases require retrieving the
initial JSON document from the underlying knowledge graph. Here, storing the
JSON document in its initial structure brings performance benefits and allows
to return the document as it was entered. This is not possible when recreating
the JSON from triples. Also, SemReasoner comes with an extensive number of
built-ins.

7 Conclusion and Future Work

This paper presented SemReasoner, a comprehensive, scalable, high-performance
knowledge graph store, and rule-based reasoner. SemReasoner has an integrated
storage layer and a rule language based on Horn logic extended by non-monotonic
negation. Further, rules can be extended by built-ins that are procedural attach-
ments to the declarative rules.

We introduced SemReasoner’s modular architecture and various APIs, al-
lowing easy and quick integration into existing applications. SemReasoner’s in-
tegrated document store functionality for JSON documents is a benefit. With
SemReasoner’s ability to handle a vast amount of data24 and its reasoning per-
formance, it outperforms other reasoning engines in most of the selected test
cases.

We are currently working on integrating SPARQL as a query language to
access the stored data. Besides, sameAs reasoning based on equivalence classes
is currently being implemented. Additionally, a clustered version allows for effi-
ciently storing and operating on larger datasets using a cluster network in the
future. Further, we plan a more extended evaluation and discussion of the con-
figuration options supported by SemReasoner.

24 SemReasoner has been tested with up to 32B triples.
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